2021-04-25

本文介绍了1维卷积神经网络(1D-CNN)在处理1维信号如心电信号、振动信号等领域的应用,对比了其与2D-CNN的优缺点。1D-CNN因其参数少、训练简单和计算效率高,在资源有限的场景下更适用。文章通过Keras框架展示了1D-CNN在模拟电路故障诊断中的应用,并提供了实验电路和数据集的描述。
摘要由CSDN通过智能技术生成

一维卷积神经网络(1D-CNN)

常见用的卷积神经网络(CNN,convolutional neural network)为2D-CNN,即卷积核为两维,常用于处理图片、视频等数据,已经成功应用于许多计算机视觉和模式识别任务中。在采用CNN处理1维信号时,通常需要将1维信号转换为2维再输入CNN中,例如将1D振动信号、心电信号等通过各种变换方式变成2D图片后输入CNN。然而,采用2D-CNN处理1D信号时存在以下缺点:

  1. 处理2维数据时,算法计算复杂度更高,通常需要更高性能的硬件来进行训练,因此不是特别适用于实时应用场景和低功耗、低内存的设备;
  2. 通常2D-CNN需要大量训练数据,然而许多1D信号处理领域缺乏大量标记数据。

近年来,越来越多的学者采用紧凑的1D-CNN来直接处理1D信号,已经成功应用于心电信号分类、结构健康监测、轴承故障诊、模拟电路故障诊断、大功率发动机故障监控等多个领域。相比于2D-CNN,1D-CNN具有参数量小、训练容易、计算量小等优点。1D-CNN与2D-CNN结构类似,只是卷积核为1维卷积,1D-CNN通常包括1D卷积层、降采样Pooling层和全连接层,通过反向传播算法对每个卷积单元参数进行优化。1D-CNN主要的超参包括:卷积层和全连接层数、卷积核大小、降采样因子大小、激活函数、学习率等。1D-CNN网络结构如图1所示。
图1 1D-CNN网络结构图
图1 1D-CNN网络结构图
卷积层将输入的局部区域与多个滤波器核进行卷积操作,然后送入神经元产生输出特征。每个过滤器采用相同的内核来提取输入局部区域的局部特征,这通常称为权重共享。卷积操作可以定义为:
y i l + 1 ( j ) = K i ⊤ ∗ x l ( j ) + b i l \mathrm{y}_{i}^{l+1}(j)=K_{i}^{\top} * x^{l}(j)+b_{i}^{l} yil+1(j)=K

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_41611588

无论多少,您的打赏是我最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值