ENVI中的3种图像分类方法

博客主要介绍了面向对象中的图像分割,以及面向对象图像分类基于规则和像素的相关内容,聚焦于信息技术领域的图像处理方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### ENVI面向对象的图像特征提取方法 #### 准备工作 在 EVNI 中主要对遥感影像进行图像融合和配准裁剪,图像融合考虑到了卫星波段中的低分辨率多光谱波段和高分辨率全色波段。通过这种组合方式可以在图像融合之后进一步提升图像分辨率,从而获得更佳的分类效果[^3]。 对于需要结合不同时间点的数据来进行分类的情况,则需对这些时间段内的图像分别执行配准处理以确保它们之间的空间一致性。完成配准后的图象可能尺寸并不相同;因此还需要将两幅影像裁剪成相同的大小以便后续分析使用。 #### 构建多源数据集 为了更好地实现特定目标(如针叶林)的识别与提取,在此之前应该建立一个多源数据库来辅助这一过程。鉴于针叶林具有较高 NDVI 值的特点,建议创建一个含有 NDVI 的多源数据集合用于支持下一步的工作流程[^2]。 ```matlab % 计算NDVI并保存为新层 ndvi = (nir - red) / (nir + red); write_image('output_ndvi.img', ndvi); ``` #### 使用 eCognition 进行面向对象的操作 进入 `Mannual Editing` 工具栏后,选择 `Image Object Editting` 下拉菜单里的 `Thematic editing` 功能选项。随后点击 `New Layer` 并从弹出列表中选取 `Sample` 来定义新的样本层次结构[^1]。 利用上述准备工作所得到的结果作为输入条件之一,在 eCognition 软件平台内开展更加深入细致的对象级特征描述活动。这通常涉及到设置合适的分割参数以及应用领域专业知识指导下的规则库设计等内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值