曲面单位法矢的导数

曲面单位向量的导数计算

设曲面的方程为:
S=S(u,v) \mathbf S = \mathbf S(u,v) S=S(u,v)

曲面的单位法向定义为:
N(u,v)=Su(u,v)×Sv(u,v)∣Su(u,v)×Sv(u,v)∣ \mathbf N(u,v) = \frac {\mathbf S_u(u,v) \times \mathbf S_v(u,v) } {|\mathbf S_u(u,v) \times \mathbf S_v(u,v)|} N(u,v)=Su(u,v)×Sv(u,v)Su(u,v)×Sv(u,v)

一阶导数的计算

设:
r(u,v)=Su(u,v)×Sv(u,v) \mathbf r(u,v) = \mathbf S_u(u,v) \times \mathbf S_v(u,v) r(u,v)=Su(u,v)×Sv(u,v)

则:
N(u,v)=r(u,v)∣r(u,v)∣ \mathbf N(u,v) = \frac {\mathbf r(u,v)} {|\mathbf r(u,v)|} \\ N(u,v)=r(u,v)r(u,v)
N(u,v)\mathbf N(u,v)N(u,v)求导有:
(N)′=(r∣r∣)′=(r(r⋅r)12)′=r′⋅(r⋅r)12−r⋅12⋅(r⋅r)−12⋅2⋅(r′⋅r)r⋅r=r′⋅(r⋅r)12−r⋅(r⋅r)−12⋅(r′⋅r)r⋅r=r′⋅(r⋅r)−r⋅(r′⋅r)(r⋅r)32 \begin{aligned} (\mathbf N)' = (\frac {\mathbf r} {|\mathbf r|} )' & = (\frac {\mathbf r} {(\mathbf r \cdot \mathbf r)^{\frac 1 2}})' \\ &= \frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r)^{\frac 1 2} -\mathbf r \cdot \frac 1 2 \cdot (\mathbf r \cdot \mathbf r)^{-\frac 1 2} \cdot 2 \cdot (\mathbf r' \cdot \mathbf r)} {\mathbf r \cdot \mathbf r} \\ &= \frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r)^{\frac 1 2} -\mathbf r \cdot (\mathbf r \cdot \mathbf r)^{-\frac 1 2} \cdot (\mathbf r' \cdot \mathbf r)} {\mathbf r \cdot \mathbf r} \\ &= \frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r)} {(\mathbf r \cdot \mathbf r)^{\frac 3 2}} \end{aligned} (N)=(rr)=((rr)21r)=rrr(rr)21r21(rr)212(rr)=rrr(rr)21r(rr)21(rr)=(rr)23r(rr)r(rr)

向量叉积的求导公式为:
(X×Y)′=X′×Y+X×Y′ (\mathbf X \times \mathbf Y)' = \mathbf X' \times \mathbf Y + \mathbf X \times \mathbf Y' (X×Y)=X×Y+X×Y
r=Su×Sv\mathbf r = \mathbf S_u \times \mathbf S_vr=Su×Sv求导有:

r′=(Su×Sv)′=(Su)′×Sv+Su×(Sv)′=(Suu⋅du+Suv⋅dv)×Sv+Su×(Suv⋅du+Svv⋅dv)=(Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv \begin{aligned} \mathbf r' = (\mathbf S_u \times \mathbf S_v)' \\ &= (\mathbf S_u)' \times \mathbf S_v + \mathbf S_u \times (\mathbf S_v)' \\ &= (\mathbf S_{uu} \cdot du + \mathbf S_{uv} \cdot dv) \times \mathbf S_v + \mathbf S_u \times (\mathbf S_{uv} \cdot du + \mathbf S_{vv} \cdot dv) \\ &=(\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv}) \times du + (\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv \end{aligned} r=(Su×Sv)=(Su)×Sv+Su×(Sv)=(Suudu+Suvdv)×Sv+Su×(Suvdu+Svvdv)=(Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv

带入N(u,v)\mathbf N(u,v)N(u,v)的导数公式求导即可。

二阶导数的计算

(N)′′=(r∣r∣)′′=(r′⋅(r⋅r)−r⋅(r′⋅r)(r⋅r)32)′=(r′⋅(r⋅r)−r⋅(r′⋅r))′⋅(r⋅r)32−((r⋅r)32)′⋅(r′⋅(r⋅r)−r⋅(r′⋅r))(r⋅r)3 \begin{aligned} (\mathbf N)'' &= (\frac {\mathbf r} {|\mathbf r|} )'' \\ &=(\frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r)} {(\mathbf r \cdot \mathbf r)^{\frac 3 2}})' \\ &=\frac {(\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r))' \cdot (\mathbf r \cdot \mathbf r)^{\frac 3 2} - ((\mathbf r \cdot \mathbf r)^{\frac 3 2})' \cdot (\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r)) } {(\mathbf r \cdot \mathbf r)^{3}} \end{aligned} (N)=(rr)=((rr)23r(rr)r(rr))=(rr)3(r(rr)r(rr))(rr)23((rr)23)(r(rr)r(rr))

对分子的第一项求导有:
(r′′⋅(r⋅r)+r′⋅2⋅(r′⋅r)−r′⋅(r′⋅r)−r⋅(r′′⋅r+r′⋅r′))⋅(r⋅r)32 \begin{aligned} ( \mathbf r'' \cdot (\mathbf r \cdot \mathbf r) + \mathbf r' \cdot 2 \cdot (\mathbf r'\cdot \mathbf r) - \mathbf r' \cdot (\mathbf r' \cdot \mathbf r) - \mathbf r \cdot (\mathbf r'' \cdot \mathbf r + \mathbf r' \cdot \mathbf r') ) \cdot (\mathbf r \cdot \mathbf r)^{\frac 3 2} \end{aligned} (r(rr)+r2(rr)r(rr)r(rr+rr))(rr)23

对分子的第二项求导有:
3⋅(r⋅r)12⋅(r′⋅r)⋅(r′⋅(r⋅r)−r⋅(r′⋅r)) \begin{aligned} 3 \cdot (\mathbf r \cdot \mathbf r)^{\frac 1 2} \cdot (\mathbf r' \cdot \mathbf r) \cdot (\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r)) \end{aligned} 3(rr)21(rr)(r(rr)r(rr))

r\mathbf rr 求二阶导:
r′′=((Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv)′ \begin{aligned} \mathbf r'' = ((\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv}) \times du + (\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv)' \end{aligned} r=((Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv)

r\mathbf rr 求二阶u,vu, vu,v偏导:
ru′′=(Suu×Sv+Su×Suv)u′×du+(Suv×Sv+Su×Svv)×dv)u′rv′′=(Suu×Sv+Su×Suv)v′×du+(Suv×Sv+Su×Svv)×dv)v′ \begin{aligned} \mathbf r''_{u} = (\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv})'_u \times du + (\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv)_u'\\ \mathbf r''_{v} = (\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv})'_v \times du + (\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv)'_v\\ \end{aligned} ru=(Suu×Sv+Su×Suv)u×du+(Suv×Sv+Su×Svv)×dv)urv=(Suu×Sv+Su×Suv)v×du+(Suv×Sv+Su×Svv)×dv)v

分别求偏导得到:
(Suu×Sv)u′=Suuu⋅du×Sv+Suu×Suv⋅du(Su×Suv)u′=Suu⋅du×Suv+Su×Suuv⋅du(Suv×Sv)u′=Suuv⋅du×Sv+Suv×Suv⋅du(Su×Svv)u′=Suu⋅du×Svv+Su×Suvv⋅du(Suu×Sv)v′=Suuv⋅dv×Sv+Suu×Svv⋅dv(Su×Suv)v′=Suv⋅dv×Suv+Su×Suvv⋅dv(Suv×Sv)v′=Suvv⋅dv×Sv+Suv×Svv⋅dv(Su×Svv)v′=Suv⋅dv×Svv+Su×Svvv⋅dv \begin{aligned} (\mathbf S_{uu} \times \mathbf S_v)'_u = \mathbf S_{uuu} \cdot du \times \mathbf S_v + \mathbf S_{uu} \times \mathbf S_{uv} \cdot du \\ (\mathbf S_u \times \mathbf S_{uv})'_u = \mathbf S_{uu} \cdot du \times \mathbf S_{uv} + \mathbf S_u \times \mathbf S_{uuv} \cdot du \\ (\mathbf S_{uv} \times \mathbf S_v )'_u = \mathbf S_{uuv} \cdot du \times \mathbf S_v + \mathbf S_{uv} \times \mathbf S_{uv} \cdot du \\ (\mathbf S_u \times \mathbf S_{vv})'_u = \mathbf S_{uu} \cdot du \times S_{vv} + \mathbf S_u \times \mathbf S_{uvv} \cdot du\\ (\mathbf S_{uu} \times \mathbf S_v)'_v = \mathbf S_{uuv} \cdot dv \times \mathbf S_v + \mathbf S_{uu} \times \mathbf S_{vv} \cdot dv \\ (\mathbf S_u \times \mathbf S_{uv})'_v = \mathbf S_{uv} \cdot dv \times \mathbf S_{uv} + \mathbf S_u \times \mathbf S_{uvv} \cdot dv \\ (\mathbf S_{uv} \times \mathbf S_v )'_v = \mathbf S_{uvv} \cdot dv \times \mathbf S_v + \mathbf S_{uv} \times \mathbf S_{vv} \cdot dv \\ (\mathbf S_u \times \mathbf S_{vv})'_v = \mathbf S_{uv} \cdot dv \times \mathbf S_{vv} + \mathbf S_u \times \mathbf S_{vvv} \cdot dv\\ \end{aligned} (Suu×Sv)u=Suuudu×Sv+Suu×Suvdu(Su×Suv)u=Suudu×Suv+Su×Suuvdu(Suv×Sv)u=Suuvdu×Sv+Suv×Suvdu(Su×Svv)u=Suudu×Svv+Su×Suvvdu(Suu×Sv)v=Suuvdv×Sv+Suu×Svvdv(Su×Suv)v=Suvdv×Suv+Su×Suvvdv(Suv×Sv)v=Suvvdv×Sv+Suv×Svvdv(Su×Svv)v=Suvdv×Svv+Su×Svvvdv

带入r′′\mathbf r''r的求导公式即可得到 r\mathbf rr 的二阶偏导。

再将 r′′\mathbf r''r带入N′′\mathbf N''N 即可得到曲线的二阶偏导数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值