曲面单位向量的导数计算
设曲面的方程为:
S=S(u,v)
\mathbf S = \mathbf S(u,v)
S=S(u,v)
曲面的单位法向定义为:
N(u,v)=Su(u,v)×Sv(u,v)∣Su(u,v)×Sv(u,v)∣
\mathbf N(u,v) = \frac {\mathbf S_u(u,v) \times \mathbf S_v(u,v) } {|\mathbf S_u(u,v) \times \mathbf S_v(u,v)|}
N(u,v)=∣Su(u,v)×Sv(u,v)∣Su(u,v)×Sv(u,v)
一阶导数的计算
设:
r(u,v)=Su(u,v)×Sv(u,v)
\mathbf r(u,v) = \mathbf S_u(u,v) \times \mathbf S_v(u,v)
r(u,v)=Su(u,v)×Sv(u,v)
则:
N(u,v)=r(u,v)∣r(u,v)∣
\mathbf N(u,v) = \frac {\mathbf r(u,v)} {|\mathbf r(u,v)|} \\
N(u,v)=∣r(u,v)∣r(u,v)
对 N(u,v)\mathbf N(u,v)N(u,v)求导有:
(N)′=(r∣r∣)′=(r(r⋅r)12)′=r′⋅(r⋅r)12−r⋅12⋅(r⋅r)−12⋅2⋅(r′⋅r)r⋅r=r′⋅(r⋅r)12−r⋅(r⋅r)−12⋅(r′⋅r)r⋅r=r′⋅(r⋅r)−r⋅(r′⋅r)(r⋅r)32
\begin{aligned}
(\mathbf N)' = (\frac {\mathbf r} {|\mathbf r|} )'
& = (\frac {\mathbf r} {(\mathbf r \cdot \mathbf r)^{\frac 1 2}})' \\
&= \frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r)^{\frac 1 2}
-\mathbf r \cdot \frac 1 2 \cdot (\mathbf r \cdot \mathbf r)^{-\frac 1 2} \cdot 2 \cdot (\mathbf r' \cdot \mathbf r)}
{\mathbf r \cdot \mathbf r} \\
&= \frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r)^{\frac 1 2}
-\mathbf r \cdot (\mathbf r \cdot \mathbf r)^{-\frac 1 2} \cdot (\mathbf r' \cdot \mathbf r)}
{\mathbf r \cdot \mathbf r} \\
&= \frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r)} {(\mathbf r \cdot \mathbf r)^{\frac 3 2}}
\end{aligned}
(N)′=(∣r∣r)′=((r⋅r)21r)′=r⋅rr′⋅(r⋅r)21−r⋅21⋅(r⋅r)−21⋅2⋅(r′⋅r)=r⋅rr′⋅(r⋅r)21−r⋅(r⋅r)−21⋅(r′⋅r)=(r⋅r)23r′⋅(r⋅r)−r⋅(r′⋅r)
向量叉积的求导公式为:
(X×Y)′=X′×Y+X×Y′
(\mathbf X \times \mathbf Y)' = \mathbf X' \times \mathbf Y + \mathbf X \times \mathbf Y'
(X×Y)′=X′×Y+X×Y′
对r=Su×Sv\mathbf r = \mathbf S_u \times \mathbf S_vr=Su×Sv求导有:
r′=(Su×Sv)′=(Su)′×Sv+Su×(Sv)′=(Suu⋅du+Suv⋅dv)×Sv+Su×(Suv⋅du+Svv⋅dv)=(Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv \begin{aligned} \mathbf r' = (\mathbf S_u \times \mathbf S_v)' \\ &= (\mathbf S_u)' \times \mathbf S_v + \mathbf S_u \times (\mathbf S_v)' \\ &= (\mathbf S_{uu} \cdot du + \mathbf S_{uv} \cdot dv) \times \mathbf S_v + \mathbf S_u \times (\mathbf S_{uv} \cdot du + \mathbf S_{vv} \cdot dv) \\ &=(\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv}) \times du + (\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv \end{aligned} r′=(Su×Sv)′=(Su)′×Sv+Su×(Sv)′=(Suu⋅du+Suv⋅dv)×Sv+Su×(Suv⋅du+Svv⋅dv)=(Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv
带入N(u,v)\mathbf N(u,v)N(u,v)的导数公式求导即可。
二阶导数的计算
(N)′′=(r∣r∣)′′=(r′⋅(r⋅r)−r⋅(r′⋅r)(r⋅r)32)′=(r′⋅(r⋅r)−r⋅(r′⋅r))′⋅(r⋅r)32−((r⋅r)32)′⋅(r′⋅(r⋅r)−r⋅(r′⋅r))(r⋅r)3 \begin{aligned} (\mathbf N)'' &= (\frac {\mathbf r} {|\mathbf r|} )'' \\ &=(\frac {\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r)} {(\mathbf r \cdot \mathbf r)^{\frac 3 2}})' \\ &=\frac {(\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r))' \cdot (\mathbf r \cdot \mathbf r)^{\frac 3 2} - ((\mathbf r \cdot \mathbf r)^{\frac 3 2})' \cdot (\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r)) } {(\mathbf r \cdot \mathbf r)^{3}} \end{aligned} (N)′′=(∣r∣r)′′=((r⋅r)23r′⋅(r⋅r)−r⋅(r′⋅r))′=(r⋅r)3(r′⋅(r⋅r)−r⋅(r′⋅r))′⋅(r⋅r)23−((r⋅r)23)′⋅(r′⋅(r⋅r)−r⋅(r′⋅r))
对分子的第一项求导有:
(r′′⋅(r⋅r)+r′⋅2⋅(r′⋅r)−r′⋅(r′⋅r)−r⋅(r′′⋅r+r′⋅r′))⋅(r⋅r)32
\begin{aligned}
( \mathbf r'' \cdot (\mathbf r \cdot \mathbf r) + \mathbf r' \cdot 2 \cdot (\mathbf r'\cdot \mathbf r) -
\mathbf r' \cdot (\mathbf r' \cdot \mathbf r) - \mathbf r \cdot (\mathbf r'' \cdot \mathbf r + \mathbf r' \cdot \mathbf r') ) \cdot (\mathbf r \cdot \mathbf r)^{\frac 3 2}
\end{aligned}
(r′′⋅(r⋅r)+r′⋅2⋅(r′⋅r)−r′⋅(r′⋅r)−r⋅(r′′⋅r+r′⋅r′))⋅(r⋅r)23
对分子的第二项求导有:
3⋅(r⋅r)12⋅(r′⋅r)⋅(r′⋅(r⋅r)−r⋅(r′⋅r))
\begin{aligned}
3 \cdot (\mathbf r \cdot \mathbf r)^{\frac 1 2} \cdot (\mathbf r' \cdot \mathbf r) \cdot (\mathbf r' \cdot (\mathbf r \cdot \mathbf r) - \mathbf r \cdot (\mathbf r' \cdot \mathbf r))
\end{aligned}
3⋅(r⋅r)21⋅(r′⋅r)⋅(r′⋅(r⋅r)−r⋅(r′⋅r))
对 r\mathbf rr 求二阶导:
r′′=((Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv)′
\begin{aligned}
\mathbf r''
= ((\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv}) \times du +
(\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv)'
\end{aligned}
r′′=((Suu×Sv+Su×Suv)×du+(Suv×Sv+Su×Svv)×dv)′
对 r\mathbf rr 求二阶u,vu, vu,v偏导:
ru′′=(Suu×Sv+Su×Suv)u′×du+(Suv×Sv+Su×Svv)×dv)u′rv′′=(Suu×Sv+Su×Suv)v′×du+(Suv×Sv+Su×Svv)×dv)v′
\begin{aligned}
\mathbf r''_{u} = (\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv})'_u \times du + (\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv)_u'\\
\mathbf r''_{v} = (\mathbf S_{uu} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{uv})'_v \times du + (\mathbf S_{uv} \times \mathbf S_v + \mathbf S_u \times \mathbf S_{vv}) \times dv)'_v\\
\end{aligned}
ru′′=(Suu×Sv+Su×Suv)u′×du+(Suv×Sv+Su×Svv)×dv)u′rv′′=(Suu×Sv+Su×Suv)v′×du+(Suv×Sv+Su×Svv)×dv)v′
分别求偏导得到:
(Suu×Sv)u′=Suuu⋅du×Sv+Suu×Suv⋅du(Su×Suv)u′=Suu⋅du×Suv+Su×Suuv⋅du(Suv×Sv)u′=Suuv⋅du×Sv+Suv×Suv⋅du(Su×Svv)u′=Suu⋅du×Svv+Su×Suvv⋅du(Suu×Sv)v′=Suuv⋅dv×Sv+Suu×Svv⋅dv(Su×Suv)v′=Suv⋅dv×Suv+Su×Suvv⋅dv(Suv×Sv)v′=Suvv⋅dv×Sv+Suv×Svv⋅dv(Su×Svv)v′=Suv⋅dv×Svv+Su×Svvv⋅dv
\begin{aligned}
(\mathbf S_{uu} \times \mathbf S_v)'_u = \mathbf S_{uuu} \cdot du \times \mathbf S_v + \mathbf S_{uu} \times \mathbf S_{uv} \cdot du \\
(\mathbf S_u \times \mathbf S_{uv})'_u = \mathbf S_{uu} \cdot du \times \mathbf S_{uv} + \mathbf S_u \times \mathbf S_{uuv} \cdot du \\
(\mathbf S_{uv} \times \mathbf S_v )'_u = \mathbf S_{uuv} \cdot du \times \mathbf S_v + \mathbf S_{uv} \times \mathbf S_{uv} \cdot du \\
(\mathbf S_u \times \mathbf S_{vv})'_u = \mathbf S_{uu} \cdot du \times S_{vv} + \mathbf S_u \times \mathbf S_{uvv} \cdot du\\
(\mathbf S_{uu} \times \mathbf S_v)'_v = \mathbf S_{uuv} \cdot dv \times \mathbf S_v + \mathbf S_{uu} \times \mathbf S_{vv} \cdot dv \\
(\mathbf S_u \times \mathbf S_{uv})'_v = \mathbf S_{uv} \cdot dv \times \mathbf S_{uv} + \mathbf S_u \times \mathbf S_{uvv} \cdot dv \\
(\mathbf S_{uv} \times \mathbf S_v )'_v = \mathbf S_{uvv} \cdot dv \times \mathbf S_v + \mathbf S_{uv} \times \mathbf S_{vv} \cdot dv \\
(\mathbf S_u \times \mathbf S_{vv})'_v = \mathbf S_{uv} \cdot dv \times \mathbf S_{vv} + \mathbf S_u \times \mathbf S_{vvv} \cdot dv\\
\end{aligned}
(Suu×Sv)u′=Suuu⋅du×Sv+Suu×Suv⋅du(Su×Suv)u′=Suu⋅du×Suv+Su×Suuv⋅du(Suv×Sv)u′=Suuv⋅du×Sv+Suv×Suv⋅du(Su×Svv)u′=Suu⋅du×Svv+Su×Suvv⋅du(Suu×Sv)v′=Suuv⋅dv×Sv+Suu×Svv⋅dv(Su×Suv)v′=Suv⋅dv×Suv+Su×Suvv⋅dv(Suv×Sv)v′=Suvv⋅dv×Sv+Suv×Svv⋅dv(Su×Svv)v′=Suv⋅dv×Svv+Su×Svvv⋅dv
带入r′′\mathbf r''r′′的求导公式即可得到 r\mathbf rr 的二阶偏导。
再将 r′′\mathbf r''r′′带入N′′\mathbf N''N′′ 即可得到曲线的二阶偏导数。

349

被折叠的 条评论
为什么被折叠?



