文章目录
微分几何笔记
0. 绪论
0.1 微分几何的主要研究内容:
如何描述空间中的一般曲线和曲面的形状,以及寻求确定曲线、曲面的形状及其大小的完全不变量系统。
不变量指的是:如果一个几何图形的一个用笛卡尔坐标系表示的量与笛卡尔坐标系的取法无关,则这个量就是该几何图形所固有的量,这个量在几何图形的刚体运动下是保持不变的。
0.2 不变量系统
- 曲线的不变量系统包含:弧长、曲率、挠率
- 曲面的不变量系统:曲面的第一基本型、曲面的第二基本型
0.3 法曲率、主曲率与 Euler 公式
曲面在任意一点出的法曲率
κ n = I I / I \kappa_n = II / I κn=II/I
是切向的函数,它在两个彼此正交的方向上分别取到它的最大值和最小值,称为曲面在该点处的主曲率。曲面在任意一点处沿任意方向上的曲率可以用主曲率表示出来,这个公式就是 Euler 公式。
0.4 Gauss 方程
曲面的第一基本型和第二基本型不是彼此独立的,它们之间的关系可以由 Gauss 方程表示。根据 Gauss 方程得知:曲面上任一点的两个主曲率的乘积仅与曲面的第一基本型有关 ,而与第二基本型无关。两个主曲率的乘积被称为 Gauss 曲率。
1. 预备知识
1.1 三维欧氏空间中的标架
1.1.1 三维欧氏空间(简写为 E 3 \mathbf E^3 E3)
- 三维欧氏空间是一个非空集合,其中的元素称为 点。
- 任意两个不同的点唯一地决定了连接它们的直线。
- 不在一条直线上的任意三个不同的点唯一地决定了通过这三个点的平面。
- 而且在 E 3 \mathbf E^3 E3 中存在不共面的四个点。
两个向量平行: a \mathbf a a × \times × b \mathbf b b = 0 \mathbf 0 0:叉乘为 0 \mathbf 0 0 向量
两个向量垂直: a \mathbf a a ⋅ \cdot ⋅ b \mathbf b b = 0:点乘为 0 。
1.1.2 标架
在 E 3 \mathbf E^3 E3 中取不共面的 4 个点,把其中一点记为 o o o,另外三点分别记为: A 、 B 、 C A、B、C A、B、C,于是得到由一点 o o o 和 3 个不共面的向量 O A \mathbf {OA} OA、 O B \mathbf {OB} OB、 O C \mathbf {OC} OC 构成的图形: { o ; O A , O B , O C } \{o; \mathbf {OA}, \mathbf {OB}, \mathbf {OC}\} { o;OA,OB,OC}。这样一个图形称为 E 3 \mathbf E^3 E3 中的一个 标架;点 o o o 称为该标架的 原点。
确定了空间中的一个标架后,则在空间中的任一点 p p p,可以唯一地表示为 3 个有序的实数 ( x , y , z ) (x, y, z) (x,y,z),这个实数组被称为点 p p p 关于 标架 { o ; O A , O B , O C } \{o; \mathbf {OA}, \mathbf {OB}, \mathbf {OC}\} { o;OA,OB,OC} 的坐标。
1.1.3 正交标架
设{
O; i \mathbf i i; j \mathbf j j; k \mathbf k k} 是 E 3 \mathbf E^3 E3中的一个标架,并且 i \mathbf i i、 j \mathbf j j、 k \mathbf k k 是彼此垂直的、构成了右手系的三个单位向量,即:
i ∗ i = j ∗ j = k ∗ k = 1 ; i ∗ j = i ∗ k = i ∗ k = 0 ; i × j = k , j × k = i , k × i = j \mathbf i * \mathbf i = \mathbf j * \mathbf j = \mathbf k * \mathbf k = 1;\\ \mathbf i* \mathbf j = \mathbf i * \mathbf k = \mathbf i * \mathbf k = 0;\\ \mathbf i \times \mathbf j = \mathbf k, \mathbf j \times \mathbf k = \mathbf i, \mathbf k \times \mathbf i = \mathbf j i∗i=j∗j=k∗k=1;i∗j=i∗k=i∗k=0;i×j=<