关于初级反演

第一个题是BZOJ 2818
要求出 g c d ( x , y ) = = i gcd(x,y) ==i gcd(x,y)==i, i i i是素数的对数,我们假设 f ( n ) f(n) f(n) g c d ( 1 , n ) … … g c d ( n , n ) gcd(1,n)……gcd(n,n) gcd(1,n)gcd(n,n)为素数的对数,所以 S ( n ) = S ( n − 1 ) + f ( n ) S(n) = S(n - 1) + f(n) S(n)=S(n1)+f(n),我们可以将 i i i带进去得到 g c d ( x i , n i ) = = 1 gcd(\frac{x}{i},\frac{n}{i} ) == 1 gcd(ix,in)==1,则满足该式子的 x x x φ ( n / i ) φ(n/i) φ(n/i)个,因为他要求的每对数交换后的结果亦可以,所以 f ( n ) = 2 ∗ φ ( n / i ) f(n) = 2*φ(n/i) f(n)=2φ(n/i) ,所以我们可以先求出欧拉函数的前缀和,然后直接枚举素数,用上面的式子计算出结果。

或者用另一种理解方式,我们知道1~n内互质的数的对数其实就是欧拉函数的前缀和, g c d ( x i , y i ) = = 1 gcd(\frac{x}{i},\frac{y}{i} ) == 1 gcd(ix,iy)==1,从中可以知道两者的上限是 n i \frac{n}{i} in,所以就转化成了求出1 - n/i的互质的数的对数,枚举i即可。
注意这道题卡long long 该开long long 的开 不用的就不要开,不然超时。
代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e7 + 13;
#define int long long
int f[N],phi[N],prime[N], vis[N],sum[N];
int len;
void init(int n){
    memset(vis, 0, sizeof vis);
    len = 0;
    for(int i = 2; i <= 10000000; i ++){
        if(vis[i] == 0){
            vis[i] = i, prime[ ++len] = i;
            phi[i] = i - 1;
        }
        for(int j = 1; j <= len; j ++){
            if(prime[j] > vis[i] || prime[j] > 10000000/i) break;
            vis[i*prime[j]] = prime[j];
            phi[i*prime[j]] = phi[i] * (i%prime[j]? prime[j] - 1: prime[j]);
        }
    }
    sum[1] = 1;
    for(int i = 2; i <= 10000000; i ++){
        sum[i] = sum[i - 1] + 2*phi[i];
    }
    
}

signed main()
{   
    int n;
    cin >> n;
    init(n);
    int ans = 0;
    for(int i = 2; i <= n; i ++){
        if(vis[i] == i){
            ans += sum[n/i];
        }
    }
    
    cout << ans << endl;
}

第二个题是UVA 11426(因为UVA要挂梯子所以就给了vj的链接)
这个题和上面的题目思路和上面差不多,同样假设 f ( n ) = g c d ( 1 , n ) + … … + g c d ( n , n ) f(n)=gcd(1,n)+……+gcd(n,n) f(n)=gcd(1,n)++gcd(n,n),所以 S ( n ) = f ( 1 ) + f ( 2 ) … … + f ( n ) S(n) = f(1) + f(2)…… + f(n) S(n)=f(1)+f(2)+f(n),我们假设i的个数为 g ( n , i ) g(n,i) g(n,i),那么i的贡献度就是 i ∗ g ( n , i ) i*g(n,i) ig(n,i),将 i i i带进gcd得到 g c d ( x i , n i ) = = 1 gcd(\frac{x}{i},\frac{n}{i} ) == 1 gcd(ix,in)==1,满足的x就有 φ ( n / i ) φ(n/i) φ(n/i)个,所以 g ( n , i ) = φ ( n / i ) g(n,i) = φ(n/i) g(n,i)=φ(n/i),我们当然不可以直接枚举i所以,可以像埃筛一样,对于每个数求出他对每个倍数的贡献度.
代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 4000000 + 5;
ll sum[N] , f[N];
int phi[N] ;
int len = 0;

void Euler(){
    for(int i=1;i<= N - 5;i++)
    phi[i]=i;
    for(int i=2;i<= N - 5;i+=2)
        phi[i]=phi[i]/2;
    for(int i=3;i<=N - 5;i+=2){
        if(phi[i] == i){
            for(int j=i;j<=N - 5;j+=i)
                phi[j]=phi[j]/i*(i-1);
        }
    }

}
void init(){
    for(int i = 1; i <= N - 5; i ++){
        for(int j = 2*i; j <= N - 5; j += i){
            f[j] +=  i*phi[j/i];
        }
    }
    sum[2] = f[2];
    for(int i = 3; i <= N - 5; i ++){
        sum[i] = sum[i - 1] + f[i];
    }
}
int main()
{
    Euler();
    init();
    int n;
    while(cin >> n,n){
        cout << sum[n] << endl;
    }

}

上面这两个可以用同一种推到思路。
在这里插入图片描述
第三个题是BZOJ 1101
这个题的i,j限制不再是相同的,我们只能用莫比乌斯函数.
附一篇大佬博客
看了就会了。。。。。。。。。。。。
其中的查询时的计算复杂度是 O ( N ) O(\sqrt{N}) O(N ),即分块,将相同的 n / i n/i n/i一起算,然后跳到下一块
代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 50000 + 10;
int miu[N],sum[N],vis[N];
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
void mobius(){
    for(int i = 1; i <= 50000; i ++) miu[i] = 1, vis[i] = 0;

    for(int i = 2; i <= 50000; i ++){
        if(vis[i]) continue;
        miu[i] = -1;
        for(int j = 2*i; j <= 50000; j += i){
            vis[j] = 1;
            if((j/i)%i == 0)miu[j] = 0;
            else miu[j] *= -1;
        }
    }
    for(int i = 1; i <= 50000; i ++){
        sum[i] = sum[i - 1] + miu[i];
    }
}

int main()
{
    mobius();
    int t;
    scanf("%d",&t);
    while(t --){
        int a,b,k;
        scanf("%d%d%d",&a,&b,&k);
        int ans = 0;
        a /= k,b /= k;
        for(int i = 1; i <= min(a, b); i ++){
            int j = min(a/(a/i), b/(b/i));
            ans += (sum[j] - sum[i - 1])*(a/i)*(b/i);
            i = j;
        }
        printf("%d\n",ans);
    }

}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值