麻省理工公开课: 线性代数 第二讲 (矩阵消元)

一、矩阵消元(高斯消元法)

  在解方程组时我们经常用到消元法,通过对方程的倍乘、加减等操作可以得到所求方程的解。

  既然方程组可以用消元法进行求解,那么方程组变成矩阵自然也可以使用消元法。

  矩阵消元目的主要是通过行变换将矩阵对角线下方的数字都变成0,从而可以回代求线性方程组的解

  我们用该方程组演示: ,拿出它的系数矩阵A:,右侧向量b:

  消元的过程是将A进行行变换得到上三角阵U,然后回代右侧向量,最后求解

 1.消元的知识准备:对左侧系数矩阵消元(A->U)

  我们保留矩阵的第一行,然后消去下方所有行的多余变量

  先从x位置开始。

  既然要消去x,那么我们只需要关心矩阵的第一列,如图

  在图中我们可以看到,关键的位置是红色标记的1(我们将这种位置的数字称为“主元”,因为它是第一个出现的,所以叫它“主元一”),而我们的目的是将蓝色标记的位置都变成0。

  操作很简单,第一行不变(因为它是主元行),第二行整体减去一倍的第一行,第三行不做变化(因为它本来就是0)。

  于是我们得到了如下图的矩阵,可以看到,第一列的元素除了第一行都变成了0。

  然后,我们处理y。

  继续观察矩阵        

  如今,-3是新的主元(主元二),而我们要消去的是蓝色位置的1。

  操作依旧简单,第一、二行都不变,将第三行减去-1/3倍的第二行。

  然后得到这样的一个矩阵。(把主元标记一下

  事实上对系数矩阵的消元到这里就结束了,我们得到了一个上三角矩阵(因为它只有上半部分的三角形里有数字),我们用U表示它。

  顺便一提,消元时主元不能为0,如果主元为0,可以将主元所在的行与它下面的主元位置非0的行进行交换(比如 变成)。

  再顺便一提,行列式的值就是主元的乘积,所以该矩阵行列式得9

  如果没有可以进行交换的行,方程无解,这种情况以后再讨论。

 2.消元的第一步:对增广矩阵消元([A  b] -> [U  b'])

  在正常的对方程组的消元过程中,等号右边的项与左边进行相同的操作,在矩阵中也是一样。

  对于方程组,我们得到了它的系数矩阵A:,然后,我们把它的右侧向量b:放到A中,得到一个新矩阵:

  我们管这个新矩阵叫做“增广矩阵”,因为它是原矩阵增加一部分构成的,我们可以把它写作[A  b]。

  对于增广矩阵的每一行,我们作与上方系数矩阵消元相同的操作,从而得到U和经过行变换的b构成的增广矩阵[U  b']

  注:正常的消元直接操作增广矩阵即可,上面对系数矩阵单独消元只是为了加深各位的理解。

 3.消元的第二步:回代

  经过上面的变换,增广矩阵变成了这个样子:

  把它改写成方程组

  求解,得到x=-1/9,y=-4/9,z=7/9

 

 二、用矩阵描述消元过程:E[A  b]=[U  b']

  上方我们讨论了如何进行矩阵消元,现在,让我们换一种思考方式,用矩阵相乘来描述消元的过程。

 (1)预备知识

  之前我们曾讨论过矩阵乘向量的问题,我们的结论是:矩阵乘向量的结果实际是矩阵列的线性组合。

  但是,矩阵消元用到的都是矩阵的行,那么,矩阵的行之间是否也有相似的性质呢?按套路来讲,如果没有这种性质我就不会问这个问题了。

  事实上,当一个向量乘一个矩阵时,得到的结果就是该矩阵行的线性组合。

  比如,其结果相当于1*[1 1] + 2*[1 -2] = [3 -3]。

  这里加上一些略微超前的概念:在一个矩阵A的左边乘一个矩阵(简称左乘),就是对A进行行变换,而在A右边乘一个矩阵(简称右乘),就是对A进行列变换。

 (2)用矩阵消元

  我们依然用这个方程进行演示,拿出它的系数矩阵A:,右侧向量b:

  我们想要得到一个矩阵E,它可以表示出我们消元的整个过程,也就是用E与A相乘便能直接得到U

  还记得我们之前消元的步骤么?

  1.首先,保持第一行不变,第二行整体减去一倍的第一行,第三行同样不变。

  即,我们需要拿出-1倍的第一行,然后将它和第二行进行线性组合(相加),然后其他行不变(注意,在矩阵消元时我们是用两行相减,而“线性组合”是相加)。

  按照需求,我们只需要在A的左边乘上(我们用E1表示这个矩阵)

  为什么是这个矩阵?我们一行一行地看。

  首先,A的第一行不变,因此我们需要拿出A的1个第一行,0个第二行,0个第三行(进行线性组合),于是1 0 0组成了E1的第一行。

  然后,我们需要-1个A的第一行,1个第二行,0个第三行进行线性组合,所以 -1 1 0组成了E1的第二行。

  第三行不变,因此需要0个第一行,0个第二行,1个第三行,所以E1的第三行是0 0 1

  经过变换,我们得到了

  2.然后,保持一、二行不变,将1/3个第二行与第三行进行线性组合

  可以自己写出需要左乘的矩阵吗?尝试着自己推导一下

  你的结果是它吗 ?我们用E2来表示这个矩阵。

  经过这次变换,我们得到了我们想要的矩阵U:(U是一个上三角矩阵)。

  现在,我们可以用一个不太完美的式子来表达消元的全过程了:

  E2(E1A)=U

  3.最后,合并消元步骤

  我们想要的结果是类似于EA=U这样的干净整洁的式子,怎么做到呢?

  在这里需要引入一条新的有关矩阵乘法的性质:矩阵乘法满足结合律(但不满足交换律)

  换句话说,E2(E1A)=(E2E1)A。(但AB≠BA)

  即E=(E2E1),我们管E叫做消元矩阵。

  4.整体描述

  用矩阵描述消元便是找到一个矩阵E(由每一步消元的消元矩阵相乘得到),使得EA=U,然后将其应用于增广矩阵[A  b]从而得到[U  b'],完成消元。

 

  后面还会介绍EA=U的变形

三、置换矩阵

  我们可以用矩阵相乘来完成矩阵的行交换与列交换,而用到的矩阵便叫做置换矩阵

 行交换

  我们消元时通过左乘矩阵实现了行与行的线性组合,那么,如果想要将两行进行交换,需要怎么做呢?

  召唤个矩阵先:

  假设我们想要这个矩阵的第一二行(得到

  对于新矩阵的第一行,我们相当于拿出了0个原矩阵的第一行,1个原矩阵的第二行,0个原矩阵的第三行。

  对于新矩阵的第二行,我们相当于拿出了1个原矩阵的第一行,0个原矩阵的第二行,0个原矩阵的第三行。

  对于新矩阵的第三行,我们相当于拿出了0个原矩阵的第一行,0个原矩阵的第二行,1个原矩阵的第三行。

  因此,我们只需在原矩阵的基础上左乘一个。(各行颜色不同是为了便于理解其构成方式,没有其他特别含义)

  我们管左乘的这个矩阵叫做置换矩阵,用P表示。

 列交换

  之前提到过,左乘即操作行,右乘即操作列

  召唤一个矩阵:

  想要交换这个矩阵的第一二列,得到

  对于新矩阵的第一列,我们相当于拿出了0个原矩阵的第一列,1个原矩阵的第二列,0个原矩阵的第三列。

  对于新矩阵的第二列,我们相当于拿出了1个原矩阵的第一列,0个原矩阵的第二列,0个原矩阵的第三列。

  对于新矩阵的第三列,我们相当于拿出了0个原矩阵的第一列,0个原矩阵的第二列,1个原矩阵的第三列。

  所以,只需要右乘

  注意:这个矩阵虽然和上面交换行的置换矩阵长相相同,但性质与构成的方式却完全不同(行交换的置换矩阵是一行一行构成的,而列交换的却是一列一列构成的)

转载: https://www.cnblogs.com/Dumblidor/p/5751579.html

框神代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
#include <cstring>
#include <stack>
#include <set>
#include <vector>
#include <map>
#include <queue>
#define Swap(a,b)  a ^= b ^= a ^= b
#define pi acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define lson rt<<1
#define rson rt<<1|1
using namespace std ;
typedef long long LL;
//const int N = 1e7+10 ;
const int inf = 0x3f3f3f3f;
const int MAX = 100;
inline int gcd(int a,int b){return b?gcd(b,a%b):a;}
inline int lcm(int a,int b){return a/gcd(a,b)*b;}
const int MAXN=50;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
    // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
    //-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
    //有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var){
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for(int i=0;i<=var;i++){
        x[i]=0;
        free_x[i]=true;
    }
    //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k = 0;k < equ && col < var;k++,col++){// 枚举当前处理的行.
    // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r=k;
        for(i=k+1;i<equ;i++){
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
        if(max_r!=k){// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0){// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1;i<equ;i++){// 枚举要删去的行.
            if(a[i][col]!=0){
                LCM = lcm(abs(a[i][col]),abs(a[k][col]));
                ta = LCM/abs(a[i][col]);
                tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                for(j=col;j<var+1;j++){
                    a[i][j] = a[i][j]*ta-a[k][j]*tb;
                }
            }
        }
    }
    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++){ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var){
        return var - k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--){
        temp = a[i][var];
        for (j = i + 1; j < var; j++){
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        }
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
int main()
{
    //    freopen("in.txt", "r", stdin);
    //    freopen("out.txt","w",stdout);
    int i, j;
    int equ,var;
    while (scanf("%d %d", &equ, &var) != EOF){
        memset(a, 0, sizeof(a));
        for (i = 0; i < equ; i++){
            for (j = 0; j < var + 1; j++){
                scanf("%d", &a[i][j]);
			}
        }
        int free_num = Gauss(equ,var);
        if (free_num == -1) printf("无解!\n");
        else if (free_num == -2) printf("有浮点数解,无整数解!\n");
        else if (free_num > 0){
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for (i = 0; i < var; i++){
                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        }else{
            for (i = 0; i < var; i++){
                printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        printf("\n");
    }
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值