1.8 初等矩阵

初等行变换与列变换

  初等行变换与初等列变换是线性代数比较基础的内容。学会了这个才能继续学习高斯消元解方程。初等行变换分为三种:

  1. 交换两行;
  2. 给某一行乘以一个倍数;
  3. 把某行的倍数加到另一行。

  同理,初等列变换,也是三种:

  1. 交换两列;
  2. 给某一列乘以一个倍数;
  3. 把某列的倍数加到另一列。

  但是这与矩阵乘法有什么关系呢?因为上面这六种变换,都与矩阵乘法的效果一样,初等行变换相当于左边乘以了一个矩阵,列变换相当于右边乘以了一个矩阵。而这个用来乘的矩阵就叫做初等矩阵elementary matrix

行交换乘法

  先看看以下两个矩阵的乘法:
( 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ) ( 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ) = ( 1 1 1 1 3 3 3 3 2 2 2 2 4 4 4 4 ) \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 1 & 1 & 1\\ 2 & 2 & 2 & 2\\ 3 & 3 & 3 & 3\\ 4 & 4 & 4 & 4 \end{pmatrix}\\ =\begin{pmatrix} 1 & 1 & 1 & 1\\ 3 & 3 & 3 & 3\\ 2 & 2 & 2 & 2\\ 4 & 4 & 4 & 4 \end{pmatrix}\\ 1000001001000001 1234123412341234 = 1324132413241324
  可以看到,乘法的左右是将矩阵的两行进行了交换。将一个单位矩阵进行行交换之后,再放在左边乘以某个矩阵,会使得这个矩阵进行行交换。这种把单位阵进行行交换之后的矩阵叫做置换矩阵。

列交换乘法

  再看下一个例子:
( 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ) ( 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ) = ( 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 ) \begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 2 & 3 & 4\\ 1 & 2 & 3 & 4\\ 1 & 2 & 3 & 4 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}\\ =\begin{pmatrix} 1 & 3 & 2 & 4\\ 1 & 3 & 2 & 4\\ 1 & 3 & 2 & 4\\ 1 & 3 & 2 & 4 \end{pmatrix}\\ 1111222233334444 1000001001000001 = 1111333322224444
  把置换矩阵放在右边就是列交换了,上面的例子,第二列和第三列就完成了交换。
  在初等矩阵中,效果是行交换和列交换的矩阵也叫做置换矩阵permutation matrix

行倍数乘法

  再看这个例子:
( 1 0 0 0 0 3 0 0 0 0 1 0 0 0 0 1 ) ( 1 2 3 4 − 1 − 2 − 3 − 4 5 6 7 8 − 5 − 6 − 7 − 8 ) = ( 1 2 3 4 − 3 − 6 − 9 − 12 5 6 7 8 − 5 − 6 − 7 − 8 ) \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 3 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4\\ -1 & -2 & -3 & -4\\ 5 & 6 & 7 & 8\\ -5 & -6 & -7 & -8 \end{pmatrix}\\ =\begin{pmatrix} 1 & 2 & 3 & 4\\ -3 & -6 & -9 & -12\\ 5 & 6 & 7 & 8\\ -5 & -6 & -7 & -8 \end{pmatrix}\\ 1000030000100001 1155226633774488 = 13552666397741288
  可以看到不过是把第二行放大了三倍。这种很简单,就不必说了。

列倍数乘法

  再看看下一个例子:
( 1 2 3 4 − 1 − 2 − 3 − 4 5 6 7 8 − 5 − 6 − 7 − 8 ) ( 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 ) = ( 1 4 3 4 − 1 − 4 − 3 − 4 5 12 7 8 − 5 − 12 − 7 − 8 ) \begin{pmatrix} 1 & 2 & 3 & 4\\ -1 & -2 & -3 & -4\\ 5 & 6 & 7 & 8\\ -5 & -6 & -7 & -8 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}\\= \begin{pmatrix} 1 & 4 & 3 & 4\\ -1 & -4 & -3 & -4\\ 5 & 12 & 7 & 8\\ -5 & -12 & -7 & -8 \end{pmatrix}\\ 1155226633774488 1000020000100001 = 115544121233774488
  我们可以找到规律了,放在右边做乘法是做列变换。这次是把第二列变成了两倍。

行倍加乘法

  大胆猜测,把单位阵做行倍加,再左乘一个矩阵,是不是也就对这个矩阵实现了行倍加呢?答案是对的:
( 1 0 0 0 3 1 0 0 0 0 1 0 0 0 0 1 ) ( 9 8 1 5 9 2 7 3 3 6 7 2 5 1 10 2 ) = ( 9 8 1 5 36 26 10 18 3 6 7 2 5 1 10 2 ) \begin{pmatrix} 1 & 0 & 0 & 0\\ 3 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 9 & 8 & 1 & 5\\ 9 & 2 & 7 & 3\\ 3 & 6 & 7 & 2\\ 5 & 1 & 10 & 2 \end{pmatrix}\\= \begin{pmatrix} 9 & 8 & 1 & 5\\ 36 & 26 & 10 & 18\\ 3 & 6 & 7 & 2\\ 5 & 1 & 10 & 2 \end{pmatrix}\\ 1300010000100001 99358261177105322 = 936358266111071051822
  从例子可以看出确实是第一行乘以三倍加到了第二行了。

列倍加乘法

  列倍加不过是左边换到右边而已,我是不厌其烦地举例子啊:
( 9 7 5 9 4 3 1 6 1 10 5 4 3 10 9 4 ) ( 1 0 2 0 0 1 0 0 0 0 1 0 0 0 0 1 ) = ( 9 7 23 9 4 3 9 6 1 10 7 4 3 10 15 4 ) \begin{pmatrix} 9 & 7 & 5 & 9\\ 4 & 3 & 1 & 6\\ 1 & 10 & 5 & 4\\ 3 & 10 & 9 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}\\= \begin{pmatrix} 9 & 7 & 23 & 9\\ 4 & 3 & 9 & 6\\ 1 & 10 & 7 & 4\\ 3 & 10 & 15 & 4 \end{pmatrix}\\ 941373101051599644 1000010020100001 = 94137310102397159644
  实验了一下,我们的猜测是对的啊,就是把第一列乘以两倍加到了第三列上。

线性变换思想

  其实这些用线性变换的思想很容易理解。一个线性变换可以用矩阵表示,这个线性变换把一组自然基变成什么样子,就会把自然基下的矩阵变成什么样子。这么说起来,比较难理解,一组自然基,其实就是单位阵,也就是说一个矩阵是通过什么步骤从单位阵变过来的,它去乘别的矩阵,也会按照同样的步骤去变换别的矩阵,这就是线性变换。
  初等矩阵与初等行变换、初等列变换是高斯消元的基础,我接下来的文章就是介绍高斯消元

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值