核心思想分解
您的方案可以分解为三个核心步骤:
- 基于历史观测的预测:利用纯观测数据
{z_1, z_2, ..., z_{k-1}}建立一个模型,来预测当前的观测值z_k。这个模型捕捉的是观测序列自身的内在动力学(观测空间的动态特性)。 - 观测空间的数据融合:将步骤1得到的 “基于历史的预测观测值” 与 “当前的实际测量值” 进行融合。这与卡尔曼滤波中“预测”与“更新”的融合思想一致,但全部在观测空间进行。
- 从融合后的观测到状态估计的映射:将融合后得到的、更可靠的“最优观测估计”通过一个函数
g(.)映射到状态空间,得到最终的状态估计x_k。
1. 这种方法是否可行?是否有已有的理论框架和方案?
答案是:非常可行,并且有成熟的理论框架与之对应。
您描述的方法与以下几类算法在思想上是高度共通的:
a) 基于“时间序列预测”的状态估计
这正是您思路的直接体现。
- 建模:使用ARIMA、LSTM、Transformer等时间序列模型,仅基于历史观测数据
z_{k-1}, z_{k-2}, ...来预测z_k。 - 融合:预测值
z_k^-可以看作“先验观测估计”。然后你可以用一个简单的滤波器(如指数平滑、甚至一个一维卡尔曼滤波器)来将其与真实测量z_k融合,得到z_k^+。 - 映射:最后通过一个函数
g(z_k^+)得到状态。如果观测是状态的线性函数z = Hx,那么这个g就是H^+(伪逆)。
b) 子空间辨识与动态模态分解
这类方法的核心思想是:直接从观测数据中辨识出系统的动态特性。
- 理论框架:子空间辨识方法(如N4SID)通过分析大量观测数据,直接估计出系统的状态空间模型
(A, B, C, D)或一个等价的低维模型。一旦得到这个模型,就可以使用标准的状态估计器(如卡尔曼滤波器)。 - 与您思路的联系:您的“建立测量递推模型”这一步,可以看作是学习观测空间的 Koopman 算子或系统的动态模态。DMD 及其变体就是做这件事的——它假设观测是某个线性系统状态的函数,并直接从数据中找出这个线性演化规律。
c) 观测器
您已经提到了观测器。对于线性系统,Luenberger 观测器确实不需要一个显式的“状态转移函数” f(x),但它需要一个精确的系统矩阵 A。如果 A 未知,就需要先用系统辨识的方法从数据中把 A 估计出来。这与您的思路是吻合的:先通过数据建模(辨识出A),再设计观测器。
d) 滑动窗口估计器 / 移动 horizon 估计
这类方法不依赖于长期的状态转移模型,而是假设在最近一个短时间窗口内,状态的变化可以用一个简单的模型(如恒定速度、恒定加速度)来描述。
- 工作原理:在每一个时刻 k,它使用最近 N 个观测值
{z_{k-N+1}, ..., z_k}来估计当前状态x_k。它本质上是在一个局部窗口内,同时完成了“动态模型的建立”(拟合一个局部模型)和“状态的估计”。 - 与您思路的联系:您的“利用过去模型获得当前测量估计”可以看作是这个局部模型的预测步骤。
2. 将融合后的结果映射到状态的方法有哪些?
除了观测器,还有多种方法可以实现从融合后的观测 z^+ 到状态 x 的映射 g(z^+):
a) 直接求逆 / 伪逆
- 适用条件:观测方程是线性的,即
z = Hx,并且H是列满秩的(状态可观测)。 - 方法:状态可以直接通过
x = H^+ z计算,其中H^+是H的 Moore-Penrose 伪逆。如果H是方阵且可逆,则x = H^{-1}z。 - 优点:计算简单快速。
- 缺点:对噪声敏感,且要求系统是完全可观测的。
b) 优化方法
将问题构造成一个优化问题:
x^* = argmin_x [ ||z^+ - H(x)||^2 + \lambda R(x) ]
H(x):观测模型,可以是非线性的。R(x):正则化项,用于引入关于状态的先验知识(例如,状态应该是平滑的、稀疏的等)。\lambda:正则化系数。- 优点:非常灵活,可以处理非线性观测模型和引入各种约束。
- 缺点:计算量通常比直接求逆大。
c) 机器学习 / 深度学习模型
训练一个模型(如神经网络)来学习从观测 z 到状态 x 的映射。
- 训练数据:需要成对的
(z, x)数据用于监督学习。这些数据可以来自高精度传感器、仿真或其它已知真实状态的时刻。 - 模型:
x = f_{NN}(z; \theta),其中\theta是网络参数。 - 优点:能够捕捉极其复杂的非线性映射,且推理速度快。
- 缺点:需要大量标注数据,模型是“黑箱”,泛化能力存疑。
d) 贝叶斯推断
如果我们有观测模型 p(z | x)(即给定状态时,观测的似然分布),以及状态的先验分布 p(x),那么我们可以通过贝叶斯公式得到后验分布:
p(x | z) ∝ p(z | x) p(x)
- 方法:最大后验概率估计就是求
argmax_x p(x | z)。对于高斯噪声假设,这就退化成了优化方法。更一般地,可以使用马尔可夫链蒙特卡洛 或变分推断等方法来近似整个后验分布。 - 优点:提供了完整的不确定性信息。
- 缺点:计算复杂。
总结与评价
您的思路跳出了必须在状态空间建立精确动力学模型的传统框架,是一个非常实用和强大的替代方案。它的优势在于:
- 鲁棒性:当系统的状态转移模型难以准确获得(例如,复杂的物理系统、经济系统、生物系统)时,该方法尤其有效。
- 数据驱动:充分利用了历史观测数据中的信息,挖掘其内在规律。
需要注意的潜在挑战:
- 可观测性:这种方法成功的前提是,系统的状态必须能从您的观测数据中“推断”出来。如果观测不能完全反映状态的变化(即系统不可观),那么映射
g(.)将是不确定的或不准确的。 - 模型精度:您建立的“测量递推模型”的准确性至关重要。如果这个模型不能很好地捕捉观测序列的动态特性,后续的融合和映射都会建立在错误的基础上。
- 动态变化:如果系统的动态特性是时变的,您的测量递推模型需要能够在线适应,例如使用递归最小二乘法或在线学习算法。
总而言之,您提出的方法不仅是可行的,而且是现代数据驱动估计理论中的一个重要分支。将时间序列预测、数据融合和状态映射这三个步骤结合起来,为解决无模型或模型不确定的状态估计问题提供了一个清晰而有效的路线图。
270

被折叠的 条评论
为什么被折叠?



