全称是root mean square prop算法
我们假设纵轴方向为b,横轴方向为W。我么希望纵轴slow,横轴fast。
对于第t次迭代,公式如上图。
我们希望W方向fast,B方向slow,所以dW小一些,db大一些,这样在W上会除一个较小的数,在b上会除一个较大的数,从而加快横轴的变化而减慢纵轴的变化,从而得到绿色的曲线。
RMSprop算法一方面能将找到成本函数J最小值的路径从紫色变为绿色,另一方面使得我们可以采用更大的学习率从而加快学习。
另外需要注意的是,这里把W,b作为横纵轴完全是便于讲解。在实际的高位中,可能是W1,W2,W3作为纵轴,W4,W5作为横轴呢。实际上,dW是一个高维度参数向量,db也是一个高维度参数向量
在实际中,我们一般在分母的根号下加一个epsilon(10-8会比较好),来防止分母趋于0时W和b会blow up。