吴恩达神经网络和深度学习-学习笔记-12-RMSprop算法

全称是root mean square prop算法
在这里插入图片描述
我们假设纵轴方向为b,横轴方向为W。我么希望纵轴slow,横轴fast。
对于第t次迭代,公式如上图。
我们希望W方向fast,B方向slow,所以dW小一些,db大一些,这样在W上会除一个较小的数,在b上会除一个较大的数,从而加快横轴的变化而减慢纵轴的变化,从而得到绿色的曲线。

RMSprop算法一方面能将找到成本函数J最小值的路径从紫色变为绿色,另一方面使得我们可以采用更大的学习率从而加快学习

另外需要注意的是,这里把W,b作为横纵轴完全是便于讲解。在实际的高位中,可能是W1,W2,W3作为纵轴,W4,W5作为横轴呢。实际上,dW是一个高维度参数向量,db也是一个高维度参数向量

在这里插入图片描述
在实际中,我们一般在分母的根号下加一个epsilon(10-8会比较好),来防止分母趋于0时W和b会blow up。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值