SCM又添一个纯国产SSD玩家

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_41689867/article/details/99322842

“你中有我,我中有你。”计算与存储之间,一直以来就有着密不可分的关系。

在数字化变革的新时代,存储性能与计算性能的优化,对于众多企业级应用的改善必然可以带来更好的效果。

SCM,即Storage Class Memory存储级内存,不仅享有DRAM的性能表现,同时拥有NAND Flash的容量优点,这样一类兼得DRAM与NAND Flash优点的创新介质,具备存储级的持久化和内存快速字节级的访问的共性。

显然,SCM在IO设备与内存设备之间架起了一座彩虹桥,适合应用于对性能和可靠性要求较高的场景。在人工智能、物联网、大数据、云计算等创新技术融合式应用发展的今天,SCM创新介质的出现,带来了计算存储前所未有的新改变,越来越备受业界的关注。

不过,在SCM领域,英特尔3D Xpoint和三星Z-NAND表现非常积极,最近一次的新闻却将东芝存储器的XL-Flash推向了市场的前台。

在8月初的美国加利福尼亚州举行的2019全球闪存峰会(Flash Memory Summit)上,北京忆恒创源科技有限公司(Memblaze)在现场展示了业界首款基于东芝XL-Flash的SCM闪存介质的NVMe SSD原型产品Memblaze PBlaze X26

东芝存储器公开信息显示,XL-Flash的延迟不会超过5微秒,相比现在3D TLC闪存的50微秒左右延迟,拥有足足10倍的更佳表现。需要指出的是,XL-FLASH的本质还是3D NAND,并且是SLC,从材料的角度XL-FLASH似乎并不属于上文谈到的SCM范畴,但是从延迟等参数看确和SCM在同一量级。

所以也可以看到PBlaze X26超低延迟的效果。现场展示的PBlaze5 X26系列SSD原型产品,已能够实现低于10μs的4K随机写入延迟、以及平均低至26μs的4K混合读写延迟。在市场定位上,这是一款明显与英特尔傲腾(Optane)SSD 对标的国产化SSD产品。

Memblaze相关高层透露,PBlaze X26系列SSD不仅性能上更加出众,超低延迟表现更佳,同时售价也将更为平易近人。目前PBlaze X26正在和部分战略合作伙伴进行应用测试,预计在2020年会发布详细的产品计划。

业内人士分析认为,一旦PBlaze X26系列SSD进入商用市场,那么势必可以带来企业级用户关键业务应用领域的新改变,更有助于加快企业用户在数字化转型的速度,实现数据存储与计算领域更多创新方案的诞生。

既然提到了采用东芝XL-FLASH的SCM介质来实现PBlaze5 X26 NVMe SSD的创新,那么这里还需要提一下来自Memblaze的增强型多命名空间管理技术,因为这个技术实现了DRAM、NAND Flash、SCM等不同介质的统一的管理,并且可以对多个命名空间分配不同的资源,实现命名空间之间的性能隔离。

Memblaze在FMS2019上现场演示了多命名空间混合介质管理技术的效果。演示方案在MySQL场景下进行,在采用该项技术的测试案例中,工程师对一块PBlaze5 910 NVMe SSD 设置了2个 Namespace,其中包括在 DRAM 上设置了一个64MB 的Namespace。与预期一样,当MySQL的Double write buffer被放在DRAM的命名空间上时,系统性能得到30%以上的提升,同时NAND的数据写入量有了大幅下降(如下图)

可见,增强型多命名空间管理技术在MySQL场景下具备明显的优化效果,通过固件统一管理DRAM介质和NAND介质命名空间,提供统一的接口给主机端, 这个方案充分利用了多种存储介质的不同特性,实现NVMe SSD性能的明显提升。

Memblaze这个演示方案非常典型,数据库往往是一个企业最为关键的应用,增强型多命名空间技术目前可以在DRAM、NAND Flash介质上实现数据库应用的性能优化,后面也会基于东芝XL-FLASH的SCM介质来进一步实现优化的创新。

为此,特别期待超低延迟的PBlaze5 X26 NVMe SSD方案能早日进入市场。

(Aming)

——Aming编辑评论——

 ?

欢迎文末留言评论!

文来源:阿明独立自媒体,版权所有,侵权必究,转载请授权

本文章和作者回复仅代表该作者个人观点,不构成任何投资建议


 

展开阅读全文

IDEA和SCM

10-20

软件配置管理(SCM)是软件开发的核心之一,主要是对软件开发过程中不断发生的变化进行管理和控制,配置管理软件可分为三类:版本控制、构建管理和缺陷跟踪系统,这里我们主要讲述CVS、CruiseControl和Jira三种对应的软件。SCM可能经常被忽略,因为大家都觉得的实施不容易,有时适得其反,下面我们将探讨一下如何将这些工作通过IDEA整合到开发人员的日常工作中,轻松实现SCM。rnrn在进行整合前,我们先介绍一下我们提及的软件。CVS,是一个强大且复杂的版本控制系统,在软件开发中启动版本控制作用。CruiseControl是ThoughtWorks公司的一个开源项目,主要用于软件的持续集成,通过CruiseControl,我们可以轻松实现Nightly Build、Hourly Build,并将集成结果信息迅速反馈给管理人员和开发人员。Jira是Atlassian公司的拳头产品,主要用于软件开发过程中的缺陷跟踪,其功能强大,完全Web界面,操作简单。越来越多的公司采用它作为缺陷跟踪管理工具。IDEA,自不用说了,是一款功能强大、智能化的Java开发工具。我们选择这几款产品,完全是因为其功能要求和广大的用户群,而且这款工具可以实现完美整合,下面我们将这几款工具整合起来,进行SCM轻松之旅。rnrn在IDEA中,整合版本控制系统是非常简单的,当前支持CVS,StartTeam,VSS,ClearCase等等,对CVS的支持是非常出色的,而且功能强大,操作也非常简单,对CVS陌生的开发人员也可以轻松使用CVS,不用担心其他过多的事情。在IDEA中你可以完成CVS的各种操作,这些都是图形化的,非常简洁,如果你觉得功能还不能满足你的需求,你可以试用一下TMate插件,功能一定会让你满意。这里我们不再对CVS进行讲述了,关于CVS的设置和权限管理,可以交给你的SCM管理员。rnrn在软件开发中,我们需要持续集成,以前所说的Nightly Build技术可能也不能满足你的需求,你需要Hourly Build,并有实时反馈,关键还有一点,就是让持续集成的配置变得简单、可靠。CruiseControl是一款非常不错的持续集成框架,所有的集成操作可以通过Ant来完成,这样脚本的编写简单啦,功能确增强啦。而其他如Schedule,反馈等其他功能交给CC去管理,这样你可以轻松完成持续集成了。通过Dashboard,你可以将持续集成的结果信息通过IDEA实时反馈给开发人员,这样开发人员也可以实时了解集成的结果,并对错误的信息及时反馈,保证了项目的进度和开发质量。关于如何将CruiseControl和IDEA整合,请参考我们网站的文章。rnrn接下来可能就是缺陷跟踪了,缺陷修复的快慢程度直接会影响到项目的进度和客户的满意程度,但是缺陷有往往修复很慢,拖拉严重,究其原因是主要测试人员的信息没有及时反馈到开发人员这里,作为开发人员可以找到理所当然的理由,同时有些缺陷系统操作太负责,开发人员首先打开缺陷跟踪系统工具,寻找到需要自己修复的缺陷,然后在IDE中修改缺陷并测试,最后又的回到缺陷跟踪系统工具,一大堆的操作,完成了一个缺陷的更正工作,太复杂,每天这样的重复工作绝对会让一个开发人员感到疲乏。通过IDEA和Jira,我们可以将缺陷信息及时反馈到开发人员工作的IDE中,和IDE完美整合,开发人员可以很快定位到错误,进行修复,最后完成提交,所有的这些操作,开发人员只需一次点击就完成,解放开发人员的重复单调劳动。Jira不仅仅是一个缺陷跟踪系统,通过Jira,可以整合客户、开发人员、测试人员,各人各司其职,信息很快得到交流和反馈,让大家感到软件开发在顺利快速的进行,朝意想的目标迈进。IDEA下的Jira插件,主要为开发人员服务,实时将信息反馈给开发人员,开发人员同时迅速地将修复的结果信息反馈到跟踪系统中,最后通过持续集成,软件迅速地完成了更新,这些方便便捷的操作会极大地鼓舞软件开发中的各方人员,甚至包括客户,及时响应,相信是每一个客户都会欣赏的。rnrn最后,我们不要忘记实时的沟通,软件是沟通交流的产物。开发人员之间可以通过IDEA下的Chat插件可以迅速沟通,在IRC Server上建立几个频道,方便开发人员、测试人员乃至客户沟通,是非常必要的。通过以上的设置,相信SCM之旅可以说是非常顺利的,原本复杂难以执行的SCM操作,变得简单易行,软件开发中的每一个人(尤其是开发人员)都会愿意接受它,但以上这一切并不是SCM的全部,还有好多事情需要SCM管理员去做,其中涉及到规划、管理、监控和答疑等等方面,但我们确实有了一个好开端,相信SCM管理员也愿意看到这点。rn rn参考资料:rnrnhttp://www.cvshome.org rnhttp://cruisecontro.sourceforge.net rnhttp://www. atlassian.com rnhttp://www.cmtoday.com rn清华大学出版社《CVS和Nightly Build技术》 rn清华大学出版社《配置管理原理与实践》rn 论坛

SSD

02-21

<p style="font-size:16px;">rn 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br />rn<br />rn基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br />rn<br />rn本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br />rn<br />rn通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br />rn<br />rn本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br />rn<br />rn本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。rn</p>rn<div>rn <br />rn</div>rn<p>rn <br />rn</p>rn<p>rn <br />rn</p>rn<p style="font-size:16px;">rn <br />rn</p>rn<p style="font-size:16px;">rn <img src="https://img-bss.csdn.net/201902211157137641.jpg" alt="" /><img src="https://img-bss.csdn.net/201902211157578041.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158173579.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158498135.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159093293.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159209625.gif" alt="" /> rn</p>rn<p style="font-size:16px;">rn <br />rn</p>

没有更多推荐了,返回首页