习题六
6.1
{1,2,3,4} 恰好有两个轮换的 4 2 = 11 \genfrac{[}{]}{0pt}{} {4}{2} = 11 24=11 个排列是什么?(轮换的形式出现在 ( 6.4 ) (6.4) (6.4) 中,而我们所需要的是 2314 这样的非轮换形式)
直接枚举答案:
2314, 2431, 3241, 1342, 3124, 4132, 4213, 1423, 2143, 3412, 4321.
6.2
从一个有 n n n 个元素的集合到一个有 m m m 个元素的集合有 m n m^n mn 个函数,其中有多少个恰好取 k k k 个不同的函数值?
6.4
将 1 / 1 + 1 / 3 + ⋯ + 1 / ( 2 n + 1 ) 1/1 + 1/3 + \cdots + 1/(2n+1) 1/1+1/3+⋯+1/(2n+1) 用调和数表示出来.
6.5
说明怎样从
U n ( x , y ) = ∑ k ≥ 1 ( n k ) ( − 1 ) k − 1 k ( x + k y ) n , 整 数 n ≥ 0. U_n(x,y) = \sum_{k \ge 1} \binom{n}{k} \frac{(-1)^{k-1}}{k} (x+ky)^n \ , \quad 整数 \ n \ge 0. Un(x,y)=k≥1∑(kn)k(−1)k−1(x+ky)n ,整数 n≥0.
中 U n ( x , y ) U_n(x,y) Un(x,y) 的定义得出递归式: U n ( x , y ) = x U n − 1 ( x , y ) + x n / n + y x n − 1 U_n(x,y) = x U_{n-1}(x,y) + x^n / n + yx^{n-1} Un(x,y)=xUn−1(x,y)+xn/n+yxn−1 ,并求解该递归式.
6.6
一位探险者在一座岛上留下一对小兔,如果一个月后小兔长成成年的大兔,又如果每一对成年的大兔每个月产出一对小兔,经过 n n n 个月之后会有多少对兔子?(两个月后有两对,它们中的一对是新生的)求这个问题与正文中的“蜜蜂树”之间的一个关系.
一个月后:1 (大兔 × 1)
两个月后:2 (大兔 × 1 + 小兔 × 1)
三个月后:3 (大兔 × 2 + 小兔 × 1)
四个月后:5 (大兔 × 3 + 小兔 × 2)
⋮ \ \vdots ⋮
n 个月后: F n + 1 F_{n+1} Fn+1.
兔子是不断向下繁衍,而文中的蜜蜂树则是不断向上溯源。
6.7
证明卡西尼恒等式
F n + 1 F n − 1 − F n 2 = ( − 1 ) n , n > 0. F_{n+1} F_{n-1} - F_n^2 = (-1)^n \ , \quad n > 0. Fn+1Fn−1−Fn2=(−1)n ,n>0.
是 F n + k = F k F n + 1 + F k − 1 F n F_{n+k} = F_k F_{n+1} + F_{k-1} F_n Fn+k=FkFn+1+Fk−1Fn 的特殊情形,也是
的一个特例.
-
在 F n + k = F k F n + 1 + F k − 1 F n F_{n+k} = F_k F_{n+1} + F_{k-1} F_n Fn+k=FkFn+1+Fk−1Fn 中,令 k = 1 − n k = 1-n k=1−n 则:
F 1 = F 1 − n F n + 1 + F − n F n 利 用 公 式 : F − n = ( − 1 ) n − 1 F n , n 是 整 数 . 则 1 = ( − 1 ) n − 2 F n − 1 F n + 1 + ( − 1 ) n − 1 F n 2 ⇒ ( − 1 ) n = F n − 1 F n + 1 − F n 2 F_1 = F_{1-n} F_{n+1} + F_{-n} F_n \\ 利用公式:\boxed{F_{-n} = (-1)^{n-1} F_n \ , \quad n \ 是整数.} \\ 则 1 = (-1)^{n-2} F_{n-1} F_{n+1} + (-1)^{n-1} F_n^2 \\ \Rightarrow (-1)^n = F_{n-1} F_{n+1} - F_n^2 F1=F1−nFn+1+F−nFn利用公式:F−n=(−1)n−1Fn ,n 是整数.则1=(−1)n−2Fn−1Fn+1+(−1)n−1Fn2⇒(−1)n=Fn−1Fn+1−Fn2 -
令 m = 1 , k = n − 1 m = 1, k = n-1 m=1,k=n−1 :
K 1 + n ( x 1 , ⋯ , x 1 + n ) K n − 1 ( x 2 , ⋯ , x n ) = K n ( x 1 , ⋯ , x n ) K n ( x 2 , ⋯ , x 1 + n ) + ( − 1 ) n − 1 利 用 公 式 : K n ( 1 , 1 , ⋯ , 1 ) = F n + 1 . 令 所 有 x = 1 : F n + 2 F n = F n + 1 2 + ( − 1 ) n − 1 → n → n − 1 F n + 1 F n − 1 − F n 2 = ( − 1 ) n K_{1+n}(x_1, \cdots, x_{1+n}) K_{n-1}(x_2, \cdots, x_n) \\ = K_n(x_1, \cdots, x_n) K_n(x_2, \cdots, x_{1+n}) + (-1)^{n-1} \\ 利用公式:\boxed{K_n(1, 1, \cdots, 1) = F_{n+1}.} \ 令所有 \ x = 1: \\ F_{n+2} F_n = F_{n+1}^2 + (-1)^{n-1} \\ \xrightarrow{n \to n-1} F_{n+1} F_{n-1} - F_n^2 = (-1)^n K1+n(x1,⋯,x1+n)Kn−1(x2,⋯,xn)=Kn(x1,⋯,xn)Kn(x2,⋯,x1+n)+(−1)n−1利用公式:Kn(1,1,⋯,1)=Fn+1. 令所有 x=1:Fn+2Fn=Fn+12+(−1)n−1n→n−1Fn+1Fn−1−Fn2=(−1)n
6.8
利用斐波那契数系将65英里/小时转换成千米/小时的近似值.
由公式:
F n + 1 千 米 ≈ F n 英 里 \boxed{F_{n+1} 千米 \approx F_n 英里} Fn+1千米≈Fn英里
∵ 65 = 55 + 8 + 2 ∴ 89 + 13 + 3 = 105 ( 千 米 ) \because 65 = 55 + 8 + 2 \\ \therefore 89 + 13 + 3 = 105 (千米) ∵65=55+8+2∴89+13+3=105(千米)
6.9
8平方英里大约等于多少平方千米?
8 平方英里 → F n + 2 \xrightarrow{F_{n+2}} Fn+2 21 平方千米
6.10
ϕ \phi ϕ 的连分数表示是什么?
6.11
当 n n n 是一个非负整数时,带有交错符号的斯特林轮换数三角形的行和 ∑ k ( − 1 ) k n k \sum_k (-1)^k \genfrac{[}{]}{0pt}{} {n}{k} ∑k(−1)kkn 等于什么?
由公式:
x n ‾ = ∑ k n k x k , 整 数 n ≥ 0. \boxed{x^{\overline{n}} = \sum_k \genfrac{[}{]}{0pt}{} {n}{k} x^k \ , \quad 整数 \ n \ge 0.} xn=k∑knxk ,整数 n≥0.
令 x = − 1 x = -1 x=−1:
∑ k ( − 1 ) k n k = ( − 1 ) n ‾ \sum_k (-1)^k \genfrac{[}{]}{0pt}{} {n}{k} = (-1)^{\overline{n}} k∑(−1)kkn=(−1)n
6.12
证明斯特林数有与
g ( n ) = ∑ k ( n k ) ( − 1 ) k f ( k ) ⇔ f ( n ) = ∑ k ( n k ) ( − 1 ) k g ( k ) . g(n) = \sum_k \binom{n}{k} (-1)^k f(k) \Leftrightarrow f(n) = \sum_k \binom{n}{k} (-1)^k g(k). g(n)=k∑(kn)(−1)kf(k)⇔f(n)=k∑(kn)(−1)kg(k).
类似的反演规律:
g ( n ) = ∑ k n k ( − 1 ) k f ( k ) ⇔ f ( n ) = ∑ k n k ( − 1 ) k g ( k ) . g(n) = \sum_k \genfrac{\{}{\}}{0pt}{} {n}{k} (-1)^k f(k) \Leftrightarrow f(n) = \sum_k \genfrac{[}{]}{0pt}{} {n}{k} (-1)^k g(k). g(n)=k∑kn(−1)kf(k)⇔f(n)=k∑kn(−1)kg(k).
证明:
6.13
在第2章和第5章里提到过微分算子 D = d d z D=\dfrac{d}{dz} D=dzd 以及 ϑ = z D \vartheta = zD ϑ=zD. 我们有:
ϑ 2 = z 2 D 2 + z D . \vartheta^2 = z^2 D^2 + zD. ϑ2=z2D2+zD.
因为 ϑ 2 f ( z ) = ϑ z f ′ ( z ) = z d d z z f ′ ( z ) = z 2 f ′ ′ ( z ) + z f ′ ( z ) \vartheta^2 f(z) = \vartheta z f'(z) = z \dfrac{d}{dz} zf'(z) = z^2 f''(z) + z f'(z) ϑ2f(z)=ϑzf′(z)=zdzdzf′(z)=z2f′′(z)+zf′(z) ,而此式就是 ( z 2 D 2 + z D ) f ( z ) . (z^2 D^2 + zD) f(z). (z2D2+zD)f(z). 类似地,可以证明 ϑ 3 = z 3 D 3 + 3 z 2 D 2 + z D . \vartheta^3 = z^3 D^3 + 3 z^2 D^2 + zD. ϑ3=z3D3+3z2D2+zD. 证明一般的公式:对所有 n ≥ 0 n \ge 0 n≥0 :
(与在
ϑ ( ϑ + b 1 − 1 ) ⋯ ( ϑ + b n − 1 ) F = z ( ϑ + a 1 ) ⋯ ( ϑ + a m ) F . \vartheta (\vartheta + b_1 - 1) \cdots (\vartheta + b_n - 1) F = z (\vartheta + a_1) \cdots (\vartheta + a_m) F. ϑ(ϑ+b1−1)⋯(ϑ+bn−1)F=z(ϑ+a1)⋯(ϑ+am)F.
中相同,这些公式可以用来在形如 ∑ k α k z k f ( k ) ( z ) \sum_k \alpha_k z^k f^{(k)} (z) ∑kαkzkf(k)(z) 和 ∑ k β k ϑ k f ( z ) \sum_k \beta_k \vartheta^k f(z) ∑k