概率统计2020-2021考试试题(2)——南京工业大学2023年春季

2020-2021 卷2

——made by njtech_计2104 Melody

填空题

  1. 已知 P ( A ) = 0.4 , P ( B ∣ A ) = 0.5 , P ( A ∣ B ) = 0.25 P(A)=0.4, P(B \mid A)=0.5, P(A \mid B)=0.25 P(A)=0.4,P(BA)=0.5,P(AB)=0.25 P ( B ) = P(B)= P(B)=

【答案】0.8

【解析】这道题目可以通过使用贝叶斯定理来求解。贝叶斯定理是一个关于条件概率的重要公式,其表达形式为 P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

  1. 设随机变量 X ∼ N ( 3 , σ 2 ) X \sim N\left(3, \sigma^2\right) XN(3,σ2), 且 P { 3 < X < 6 } = 0.2 P\{3<X<6\}=0.2 P{3<X<6}=0.2, 则 P { X ≤ 0 } = P\{X \leq 0\}= P{X0}=

【答案】0.3

【解析】正态分布,3-6占了0.2 ,对称过来0-3也占0.2,于是整个部分就占了0.4,小于0和大于6的部分一共0.6,对称分一半就是0.3

  1. 设随机变量 X 、 Y \mathrm{X} 、 \mathrm{Y} XY 相互独立, 且均服从 [ 0 , 3 ] [0,3] [0,3] 上的均匀分布, Z = max ⁡ ( X , Y ) Z=\max (X, Y) Z=max(X,Y), 则 P { Z > 1 } = P\{Z>1\}= P{Z>1}=

【答案】 8 9 \frac{8}{9} 98

【解析】X和Y都是服从(0,3)的均匀分布的,所以得到X和Y在区间(1,3)内的概率都是2/3。然后分别考虑下面四种情况

  • X,Y都在(1,3)区间内: ( 2 3 ) 2 = 4 9 (\frac{2}{3})^2=\frac{4}{9} (32)2=94
  • X在(0,1)区间,Y在(1,3)区间: ( 1 3 ) ( 2 3 ) = 2 9 (\frac{1}{3})(\frac{2}{3})=\frac{2}{9} (31)(32)=92
  • X在(1,3)区间,Y在(0,1)区间: ( 2 3 ) ( 1 3 ) = 2 9 (\frac{2}{3})(\frac{1}{3})=\frac{2}{9} (32)(31)=92

所以, P {   Z ≤ 1 } P\{\ Z \leq 1\} P{ Z1}的总概率是 8 9 \frac{8}{9} 98

  1. 设随机变量 X ∼ E ( 1 ) X \sim E(1) XE(1), 又 Y = X + e − 2 x Y=X+e^{-2 x} Y=X+e2x, 则 E Y = \mathrm{EY}= EY=

【答案】 4 3 \frac{4}{3} 34

  1. X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 是来自 χ 2 ( n ) \chi^2(n) χ2(n) 分布的总体的样本, 则 E X ˉ = E \bar{X}= EXˉ= , D X ˉ = D \bar{X}= DXˉ=

【答案】n和2

【解析】这个问题涉及到卡方分布(chi-squared distribution)的期望和方差的计算。在卡方分布中,如果一个随机变量X服从自由度为n的卡方分布(即 X ∼ χ 2 ( n ) X\sim\chi^2(n) Xχ2(n)),那么它的期望值就是其自由度n,其方差则是自由度的2倍,即2n。

然而在这个问题中,我们需要找到的是样本平均值 X ˉ \bar{X} Xˉ的期望和方差。因为样本平均数是所有样本值的平均,所以它的期望值就是原来随机变量的期望值,即自由度n。而对于方差,我们知道样本平均值的方差等于原来随机变量的方差除以样本数n,所以 D X ˉ = 2 n / n = 2 D\bar{X}=2n/n=2 DXˉ=2n/n=2

  1. 设某工件的长度 X ∼ N ( μ , 4 2 X \sim N\left(\mu, 4^2\right. XN(μ,42 ) (单位: m m \mathrm{mm} mm ), 今抽取 9 件测量其长度, 得样本均 值 x ˉ = 147.33 \bar{x}=147.33 xˉ=147.33, 则 μ \mu μ 的置信度为 95 % 95 \% 95% 的置信区间为 ( z 0.025 = 1.96 , z 0.05 = 1.645 ) \left(z_{0.025}=1.96, z_{0.05}=1.645\right) (z0.025=1.96,z0.05=1.645).

【答案】 ( 144.72 , 149.94 ) (144.72,149.94) (144.72,149.94)

【解析】置信区间的计算公式是 x ˉ ± z α / 2 ⋅ σ n \bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} xˉ±zα/2n σ,其中 x ˉ \bar{x} xˉ是样本均值, z α / 2 z_{\alpha/2} zα/2是标准正态分布的 α 2 \frac{\alpha}{2} 2α分位数, σ \sigma σ是总体标准差, n n n是样本大小。

因为我们需要计算 95 % 95\% 95%的置信区间,所以 α = 0.05 \alpha = 0.05 α=0.05 z α / 2 = z 0.025 = 1.96 z_{\alpha/2} = z_{0.025} = 1.96 zα/2=z0.025=1.96

代入这些值,我们得到置信区间为 147.33 ± 1.96 ⋅ 1.5 9 = 147.33 ± 2.61 147.33 \pm 1.96 \cdot \frac{1.5}{\sqrt{9}} = 147.33 \pm 2.61 147.33±1.969 1.5=147.33±2.61

选择题

  1. P ( A ) > 0 , P ( B ) > 0 P(A)>0, P(B)>0 P(A)>0,P(B)>0, 且 A , B A, B A,B 互斥, 则下列结论正确的是
    (A) A , B A, B A,B 独立;
    (B) A ˉ , B ˉ \bar{A}, \bar{B} Aˉ,Bˉ 互斥;
    © A ˉ , B ˉ \bar{A}, \bar{B} Aˉ,Bˉ 相容;
    (D) P ( A B ˉ ) = P ( A ) P(A \bar{B})=P(A) P(ABˉ)=P(A).

【答案】D

【解析】这个问题涉及到概率论中的基本概念,包括事件的互斥、独立、相容以及概率的计算。

(A)选项:“ A A A B B B 独立”,这个选项是错误的。互斥事件不能是独立事件,因为如果事件 A A A发生,那么事件 B B B就不能发生,反之亦然。这与独立事件的定义(一个事件的发生不影响另一个事件的发生概率)相违背。

(B)选项:“ A ˉ \bar{A} Aˉ B ˉ \bar{B} Bˉ 互斥”,这个选项也是错误的。事件 A A A和事件 B B B是互斥的,说明它们不能同时发生,但是对于它们的补集 A ˉ \bar{A} Aˉ B ˉ \bar{B} Bˉ,这两个事件完全可以同时发生。

©选项:“ A ˉ \bar{A} Aˉ B ˉ \bar{B} Bˉ 相容”,这个选项是正确的,相容事件是指至少有一个事件可以发生, A ˉ \bar{A} Aˉ B ˉ \bar{B} Bˉ是相容的,因为它们可以同时发生。

(D)选项:“ P ( A B ˉ ) = P ( A ) P(A \bar{B})=P(A) P(ABˉ)=P(A)”,这个选项是正确的。因为事件 A A A B B B是互斥的,也就是说, A A A B B B不能同时发生。因此,事件 A A A发生的时候,事件 B B B一定没有发生,也就是说, P ( A B ˉ ) P(A \bar{B}) P(ABˉ)就是 P ( A ) P(A) P(A)

所以,正确的选项是D。

  1. 设随机变量 X X X 的分布律为 P { X = k } = b λ k ( k = 1 , 2 , ⋯   ) ( b > 0 ) P\{X=k\}=b \lambda^k(k=1,2, \cdots)(b>0) P{X=k}=bλk(k=1,2,)(b>0), 则 λ \lambda λ

    (A) λ = 1 \lambda=1 λ=1;

    (B) λ = 1 b \lambda=\frac{1}{b} λ=b1;

    © λ = 1 b + 1 \lambda=\frac{1}{b+1} λ=b+11;

    (D) λ = b + 1 \lambda=\mathrm{b}+1 λ=b+1.

【答案】C

【解析】题目中给出了随机变量 X X X 的分布律为 P { X = k } = b λ k ( k = 1 , 2 , ⋯   ) ( b > 0 ) P\{X=k\}=b \lambda^k(k=1,2, \cdots)(b>0) P{X=k}=bλk(k=1,2,)(b>0)。我们知道,对于任何一个随机变量,它所有可能取值的概率之和应该为1。因此,我们可以建立如下方程:

b λ + b λ 2 + b λ 3 + ⋯ = 1 b\lambda + b\lambda^2 + b\lambda^3 + \cdots = 1 +bλ2+bλ3+=1

这是一个无穷等比数列的和,根据等比数列求和公式,只有当公比 λ \lambda λ 的绝对值小于1时,等比数列才会收敛,因此 λ \lambda λ 必须满足 ∣ λ ∣ < 1 |\lambda|<1 λ<1。等比数列的和为 b λ / ( 1 − λ ) = 1 b\lambda/(1-\lambda) = 1 /(1λ)=1。解这个方程,我们得到 λ = b / ( b + 1 ) \lambda = b/(b+1) λ=b/(b+1),因此,选项 © “ λ = 1 b + 1 \lambda=\frac{1}{b+1} λ=b+11” 是正确的。

  1. 对于随机变量 X , Y X, Y X,Y, 若 E ( X Y ) = E X E Y E(X Y)=E X E Y E(XY)=EXEY, 则下列结论正确的是 ( )
    (A) D ( X Y ) = D X D Y D(X Y)=D X D Y D(XY)=DXDY;
    (B) D ( X + Y ) = D X + D Y D(X+Y)=D X+D Y D(X+Y)=DX+DY;
    © X , Y X, Y X,Y 独立;
    (D) X , Y X, Y X,Y 不独立.

【答案】B

【解析】该题中已知 E ( X Y ) = E X E Y E(XY) = EXEY E(XY)=EXEY,这其实是两个随机变量 X X X Y Y Y 不相关(或协方差为0)的定义,即 cov ⁡ ( X , Y ) = E ( X Y ) − E X E Y = 0 \operatorname{cov}(X, Y) = E(XY) - EXEY = 0 cov(X,Y)=E(XY)EXEY=0,而不是 X X X Y Y Y 独立。独立性是一种更强的条件,对于独立的随机变量,不仅满足不相关的条件,还需要满足 P ( X ∈ A , Y ∈ B ) = P ( X ∈ A ) P ( Y ∈ B ) P(X\in A, Y\in B) = P(X\in A)P(Y\in B) P(XA,YB)=P(XA)P(YB) 对所有事件 A A A B B B 都成立。

选项 (A) 是不正确的,因为二者的方差乘积并不能从 E ( X Y ) = E X E Y E(XY) = EXEY E(XY)=EXEY 得出。选项 © 和 (D) 都与独立性有关,但如前所述,我们不能从 E ( X Y ) = E X E Y E(XY) = EXEY E(XY)=EXEY 这个条件推断出 X X X Y Y Y 的独立性,因此它们都是错误的。

对于选项 (B),在随机变量的方差的性质中,我们有 D ( X + Y ) = D X + D Y D(X + Y) = DX + DY D(X+Y)=DX+DY 当且仅当 X X X Y Y Y 不相关。因此,选项 (B) “ D ( X + Y ) = D X + D Y D(X+Y)=DX + DY D(X+Y)=DX+DY” 是正确的。

  1. X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 是来自总体 X X X 的简单随机样本, 其中 E X = μ , D X = σ 2 E X=\mu, D X=\sigma^2 EX=μ,DX=σ2, 则下列统 计量中是 σ 2 \sigma^2 σ2 的无偏估计量是
    (A) 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \frac{1}{n} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2 n1i=1n(XiXˉ)2;
    (B) 1 n + 1 ∑ i = 1 n ( X i − X ˉ ) 2 \frac{1}{n+1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2 n+11i=1n(XiXˉ)2;
    © 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 \frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2 n11i=1n(XiXˉ)2;
    (D) 1 n ∑ i = 1 n X i 2 \frac{1}{n} \sum_{i=1}^n X_i^2 n1i=1nXi2

【答案】C

【解析】在统计学中,我们经常使用样本方差作为总体方差的无偏估计量。样本方差的公式定义为: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2 = \frac{1}{n-1}\sum_{i=1}^n(X_i - \bar{X})^2 S2=n11i=1n(XiXˉ)2,其中 X ˉ \bar{X} Xˉ 是样本平均值, n n n 是样本数量。此公式中分母为 n − 1 n-1 n1,而不是 n n n,这是为了解决偏差问题,使得 S 2 S^2 S2 成为无偏估计量。

甲袋中装中有3个白球和3个红球,乙袋中装有4个白球和2个红球,从甲袋中取出一-球放入乙袋, 再从乙袋中取出一球,
(1)求从乙袋中取出的是红球的概率;
(2) 若从乙袋中取出的球为白球,求从甲袋中取出的是红球的概率.

【解】设 A 1 = { A_1=\{ A1={ 从甲袋中取出白球 } , A 2 = { \}, A_2=\{ },A2={ 从甲袋中取出红球 } , B = { \}, B=\{ },B={ 从乙袋中取出红球 } \} }.
(1) 由题意, P ( B ∣ A 1 ) = 2 7 , P ( B ∣ A 2 ) = 3 7 , P ( A 1 ) = P ( A 2 ) = 1 2 P\left(B \mid A_1\right)=\frac{2}{7}, P\left(B \mid A_2\right)=\frac{3}{7}, P\left(A_1\right)=P\left(A_2\right)=\frac{1}{2} P(BA1)=72,P(BA2)=73,P(A1)=P(A2)=21,

由全概率公式 P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) = 1 2 × 2 7 + 1 2 × 3 7 = 5 14 P(B)=P\left(A_1\right) P\left(B \mid A_1\right)+P\left(A_2\right) P\left(B \mid A_2\right)=\frac{1}{2} \times \frac{2}{7}+\frac{1}{2} \times \frac{3}{7}=\frac{5}{14} P(B)=P(A1)P(BA1)+P(A2)P(BA2)=21×72+21×73=145
(2) 由条件概率 P ( A 2 ∣ B ˉ ) = P ( A 2 B ˉ ) P ( B ˉ ) = P ( A 2 ) P ( B ˉ ∣ A 2 ) P ( B ˉ ) = 1 2 × 4 7 9 14 = 4 9 P\left(A_2 \mid \bar{B}\right)=\frac{P\left(A_2 \bar{B}\right)}{P(\bar{B})}=\frac{P\left(A_2\right) P\left(\bar{B} \mid A_2\right)}{P(\bar{B})}=\frac{\frac{1}{2} \times \frac{4}{7}}{\frac{9}{14}}=\frac{4}{9} P(A2Bˉ)=P(Bˉ)P(A2Bˉ)=P(Bˉ)P(A2)P(BˉA2)=14921×74=94.

设连续型随机变量 X \mathrm{X} X 的概率密度为 f ( x ) = { a x + b , 0 ≤ x ≤ 1 , 0 ,  其 它,  f(x)=\left\{\begin{array}{l}a x+b, 0 \leq x \leq 1, \\ 0, \quad \text { 其 它, }\end{array}\right. f(x)={ax+b,0x1,0,   E X = 7 12 E X=\frac{7}{12} EX=127, 求(1) a , b a, b a,b 的值; (2) X \mathrm{X} X 的分布函数 F ( x ) \mathrm{F}(\mathrm{x}) F(x).
1 = ∫ − ∞ + ∞ f ( x ) d x = ∫ 0 1 ( a x + b ) d x = a 2 + b , 7 12 = ∫ − ∞ + ∞ x f ( x ) d x = ∫ 0 1 x ( a x + b ) d x = a 3 + b 2 , \begin{aligned} & 1=\int_{-\infty}^{+\infty} f(x) d x=\int_0^1(a x+b) d x=\frac{a}{2}+b, \\ & \frac{7}{12}=\int_{-\infty}^{+\infty} x f(x) d x=\int_0^1 x(a x+b) d x=\frac{a}{3}+\frac{b}{2}, \end{aligned} 1=+f(x)dx=01(ax+b)dx=2a+b,127=+xf(x)dx=01x(ax+b)dx=3a+2b,
联立方程组解得 a = 1 , b = 1 2 a=1, b=\frac{1}{2} a=1,b=21.
由分布函数定义得 F ( x ) = ∫ − ∞ x f ( t ) d t = { 0 , x < 0 , x 2 + x 2 , 0 ≤ x ≤ 1 , 1 , x > 1. F(x)=\int_{-\infty}^x f(t) d t=\left\{\begin{array}{cc}0, & x<0, \\ \frac{x^2+x}{2}, & 0 \leq x \leq 1, \\ 1, & x>1 .\end{array}\right. F(x)=xf(t)dt= 0,2x2+x,1,x<0,0x1,x>1.

某种商品的合格率为 90 % 90 \% 90%, 某单位要想给 100 名职工每个人一件这种商品, 试求: 该单位至少购买多少件这种商品才能以 97.7 % 97.7 \% 97.7%, 的概率保证每个人都可以得到一件合格品 ( Φ ( 2 ) = 0.977 ) (\Phi(2)=0.977) (Φ(2)=0.977).

【解】设至少购买 n \mathrm{n} n 件商品, X \mathrm{X} X 表示 n \mathrm{n} n 件商品中合格品的件数, 则 X − B ( n , 0.9 ) , E X = 0.9 n , D X = 0.09 n X-B(n, 0.9), E X=0.9 n, D X=0.09 n XB(n,0.9),EX=0.9n,DX=0.09n, 由 D − L D-L DL 中心极限定理
P { X ≥ 100 } = P { X − 0.9 n 0.09 n ≥ 100 − 0.9 n 0.09 n } ≈ 1 − Φ ( 100 − 0.9 n 0.09 n ) = Φ ( 0.9 n − 100 0.09 n ) ≥ 0.977 = Φ ( 2 ) .(4分)   由  0.9 n − 100 0.3 n ≥ 2 , n ≥ 118.36 ,  取  n = 119. \begin{aligned} & P\{X \geq 100\}=P\left\{\frac{X-0.9 n}{\sqrt{0.09 n}} \geq \frac{100-0.9 n}{\sqrt{0.09 n}}\right\} \\ & \approx 1-\Phi\left(\frac{100-0.9 n}{\sqrt{0.09 n}}\right)=\Phi\left(\frac{0.9 n-100}{\sqrt{0.09 n}}\right) \geq 0.977=\Phi(2) \text {.(4分) } \\ & \text { 由 } \frac{0.9 n-100}{0.3 \sqrt{n}} \geq 2, n \geq 118.36, \text { 取 } \mathrm{n}=119 . \end{aligned} P{X100}=P{0.09n X0.9n0.09n 1000.9n}1Φ(0.09n 1000.9n)=Φ(0.09n 0.9n100)0.977=Φ(2).(4  0.3n 0.9n1002,n118.36,  n=119.
因此, 至少购买 119 件这种商品才能以 97.7 % 97.7 \% 97.7% 的概率保证每个人都得到 1 件合格品. (8分)

六. (本题 12 分) 设二维随机变量 ( X , Y ) (X, Y) (X,Y) 的联合概率分布如下表, 求 (1) X 、 Y X 、 Y XY 的数 学期望 E X , E Y ; E X, E Y ; EX,EY; (2) P { X + Y > 1 } ; ( 3 ) P\{X+Y>1\} ;(3) P{X+Y>1};(3) Z = max ⁡ ( X , Y ) Z=\max (X, Y) Z=max(X,Y), 求 E Z E Z EZ.

image-20230705212120806

六、(12分) 解(1) X ∼ ( 0 1 0.65 0.35 ) , Y ∼ ( 0 1 2 0.4 0.25 0.35 ) X \sim\left(\begin{array}{cc}0 & 1 \\ 0.65 & 0.35\end{array}\right), Y \sim\left(\begin{array}{ccc}0 & 1 & 2 \\ 0.4 & 0.25 & 0.35\end{array}\right) X(00.6510.35),Y(00.410.2520.35),(4分)
 (2)  E X = 0 × 0.65 + 1 × 0.35 = 0.35 , E Y = 0 × 0.4 + 1 × 0.25 + 2 × 0.35 = 0.95 , P { X + Y > 1 } = P { X = 0 , Y = 2 } + P { X = 1 , Y = 1 } + P { X = 1 , Y = 2 } = 0.3 + 0.15 + 0.05 = 0.5 , ( 8  分)  \begin{aligned} & \text { (2) } E X=0 \times 0.65+1 \times 0.35=0.35, E Y=0 \times 0.4+1 \times 0.25+2 \times 0.35=0.95, \\ & P\{X+Y>1\}=P\{X=0, Y=2\}+P\{X=1, Y=1\}+P\{X=1, Y=2\}=0.3+0.15+0.05=0.5,(8 \text { 分) } \end{aligned}  (2) EX=0×0.65+1×0.35=0.35,EY=0×0.4+1×0.25+2×0.35=0.95,P{X+Y>1}=P{X=0,Y=2}+P{X=1,Y=1}+P{X=1,Y=2}=0.3+0.15+0.05=0.5,(8 
X ∼ ( 3 ) Z = max ⁡ ( X , Y ) \mathbf{X} \sim(3) Z=\max (X, Y) X(3)Z=max(X,Y) 可取值为 0 , 1 , 2 0,1,2 0,1,2,
P { Z = 0 } = P { X = 0 , Y = 0 } = 0.25 , P { Z = 2 } = P { X = 0 , Y = 2 } + P { X = 1 , Y = 2 } = 0.35 ,  则  P { Z = 1 } = 1 − 0.25 − 0.35 = 0.4 ,  故  Z ∼ ( 0 1 2 0.25 0.4 0.35 ) , E Z = 0.4 + 0.7 = 1.1. ( 12  分)  \begin{aligned} & P\{Z=0\}=P\{X=0, Y=0\}=0.25, \\ & P\{Z=2\}=P\{X=0, Y=2\}+P\{X=1, Y=2\}=0.35, \text { 则 } P\{Z=1\}=1-0.25-0.35=0.4, \\ & \text { 故 } Z \sim\left(\begin{array}{ccc} 0 & 1 & 2 \\ 0.25 & 0.4 & 0.35 \end{array}\right), E Z=0.4+0.7=1.1 .(12 \text { 分) } \end{aligned} P{Z=0}=P{X=0,Y=0}=0.25,P{Z=2}=P{X=0,Y=2}+P{X=1,Y=2}=0.35,  P{Z=1}=10.250.35=0.4,  Z(00.2510.420.35),EZ=0.4+0.7=1.1.(12 

七. (本题 12 分) 设 ( X , Y ) (X, Y) (X,Y) 的概率密度函数为 f ( x , y ) = { 2 , 0 < x < 1 , 0 < y < x , 0 ,  其他,  f(x, y)=\left\{\begin{array}{lc}2, & 0<x<1,0<y<x, \\ 0, & \text { 其他, }\end{array}\right. f(x,y)={2,0,0<x<1,0<y<x, 其他
求: (1) 求 X , Y X, Y X,Y 的边缘密度函数 f X ( x ) , f Y ( y ) \mathrm{f}_X(x), f_Y(y) fX(x),fY(y), 并判断 X , Y X, Y X,Y 是否独立; (2) Cov ⁡ ( X Y ) \operatorname{Cov}(X Y) Cov(XY); (3) ρ x , y \rho_{x, y} ρx,y

七 (12分 ) ( X , Y ) ∼ f ( x , y ) = { 2 , 0 < x < 1 , 0 < y < x 0 ,  其他  )(\mathrm{X}, \mathrm{Y}) \sim f(x, y)=\left\{\begin{array}{lc}2, & 0<x<1,0<y<x \\ 0, & \text { 其他 }\end{array}\right. )(X,Y)f(x,y)={2,0,0<x<1,0<y<x 其他 
E X = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x f ( x , y ) d x d y = ∫ 0 1 d x ∫ 0 x 2 x d y = 2 3 , E X 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x 2 f ( x , y ) d x d y = ∫ 0 1 d x ∫ 0 x 2 x 2 d y = 1 2 ; \begin{aligned} & E X=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) d x d y=\int_0^1 d x \int_0^x 2 x d y=\frac{2}{3}, \\ & E X^2=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 f(x, y) d x d y=\int_0^1 d x \int_0^x 2 x^2 d y=\frac{1}{2} ; \end{aligned} EX=++xf(x,y)dxdy=01dx0x2xdy=32,EX2=++x2f(x,y)dxdy=01dx0x2x2dy=21;
E X 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x 2 f ( x , y ) d x d y = ∫ 0 1 d x ∫ 0 x 2 x 2 d y = 1 2 ; E X^2=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 f(x, y) d x d y=\int_0^1 d x \int_0^x 2 x^2 d y=\frac{1}{2} ; EX2=++x2f(x,y)dxdy=01dx0x2x2dy=21;
D X = E X 2 − ( E X ) 2 = 1 18 D X=E X^2-(E X)^2=\frac{1}{18} DX=EX2(EX)2=181 。同理, E Y = 1 3 , D Y = 1 18 E Y=\frac{1}{3}, D Y=\frac{1}{18} EY=31,DY=181
E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y = ∫ 0 1 d x ∫ 0 x 2 x y d y = 1 4 。 E(X Y)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f(x, y) d x d y=\int_0^1 d x \int_0^x 2 x y d y=\frac{1}{4} 。 E(XY)=++xyf(x,y)dxdy=01dx0x2xydy=41
( 8 分)
cov ⁡ ( X , Y ) = E ( X Y ) − E X ⋅ E Y = 1 4 − 2 3 × 1 3 = 1 36 \operatorname{cov}(X, Y)=E(X Y)-E X \cdot E Y=\frac{1}{4}-\frac{2}{3} \times \frac{1}{3}=\frac{1}{36} cov(X,Y)=E(XY)EXEY=4132×31=361, 。
(10 分)
于是, ρ X , Y = Cov ⁡ ( X , Y ) D X D Y = 1 36 1 18 1 18 = 1 2 \rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D X} \sqrt{D Y}}=\frac{\frac{1}{36}}{\sqrt{\frac{1}{18}} \sqrt{\frac{1}{18}}}=\frac{1}{2} ρX,Y=DX DY Cov(X,Y)=181 181 361=21.
(12分)

八. (本题 10 分) 设 ( X 1 , X 2 , ⋯   , X n ) \left(X_1, X_2, \cdots, X_n\right) (X1,X2,,Xn) 为取自总体 X X X 的样本, X X X 的密度函数为 f ( x ; α ) = { ( α + 1 ) x α , 0 < x < 1 , 0 ,  其他,  f(x ; \alpha)=\left\{\begin{array}{cc}(\alpha+1) x^\alpha, & 0<x<1, \\ 0, & \text { 其他, }\end{array}\right. f(x;α)={(α+1)xα,0,0<x<1, 其他 其中 α > − 1 \alpha>-1 α>1 为末知参数, 求: (1) α \alpha α 的矩估计量; (2) α \alpha α 的极大似然估计量.

总体 X X X 的数学期望 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ 0 1 x ( α + 1 ) x α d x = α + 1 α + 2 E(X)=\int_{-\infty}^{+\infty} x f(x) d x=\int_0^1 x(\alpha+1) x^\alpha d x=\frac{\alpha+1}{\alpha+2} E(X)=+xf(x)dx=01x(α+1)xαdx=α+2α+1, 令 E X = X ˉ E X=\bar{X} EX=Xˉ, 则得末知参数 α \alpha α 的矩估计量为 α ^ = 1 − 2 X ˉ X ˉ − 1 \hat{\alpha}=\frac{1-2 \bar{X}}{\bar{X}-1} α^=Xˉ112Xˉ
x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 相应于的样本值, 则似然函数为
L ( α ) = ∏ i = 1 n ( α + 1 ) x i α = ( α + 1 ) n ( ∏ i = 1 n x i ) α , ( i = 1 , 2 , … , n ) , ln ⁡ L ( α ) = n ln ⁡ ( α + 1 ) + α ( ∑ i = 1 n ln ⁡ x i ) , d ln ⁡ L d α = n α + 1 + ∑ i = 1 n ln ⁡ x i , \begin{gathered} L(\alpha)=\prod_{i=1}^n(\alpha+1) x_i^\alpha=(\alpha+1)^n\left(\prod_{i=1}^n x_i\right)^\alpha,(i=1,2, \ldots, n), \\ \ln L(\alpha)=n \ln (\alpha+1)+\alpha\left(\sum_{i=1}^n \ln x_i\right), \frac{d \ln L}{d \alpha}=\frac{n}{\alpha+1}+\sum_{i=1}^n \ln x_i, \end{gathered} L(α)=i=1n(α+1)xiα=(α+1)n(i=1nxi)α,(i=1,2,,n),lnL(α)=nln(α+1)+α(i=1nlnxi),dαdlnL=α+1n+i=1nlnxi,
d ln ⁡ L d α = 0 \frac{d \ln L}{d \alpha}=0 dαdlnL=0, 解得 α \alpha α 的极大似然估计值为 α ^ = − 1 − n / ( ∑ i = 1 n ln ⁡ x i ) \hat{\alpha}=-1-n /\left(\sum_{i=1}^n \ln x_i\right) α^=1n/(i=1nlnxi).
从而得 α \alpha α 的极大似然估计量为 α ^ = − 1 − n / ( ∑ i = 1 n ln ⁡ X i ) \hat{\alpha}=-1-n /\left(\sum_{i=1}^n \ln X_i\right) α^=1n/(i=1nlnXi).

九.

设某次参加概率统计课程的学生成绩服从正态分布, 从中随机地抽取 36 位学生的成绩, 算得平均成绩为 66.5 分, 标准差为 15 分, 问在显著性水平 0.05 下, 是否可以认为这次考试全体学生平均成绩 70 分 ( t 0.025 ( 35 ) = 2.0301 , t 0.05 ( 35 ) = 1.6896 ) \left(t_{0.025}(35)=2.0301, t_{0.05}(35)=1.6896\right) (t0.025(35)=2.0301,t0.05(35)=1.6896).

建立假设 H 0 : μ = μ 0 = 70 , H 1 : μ ≠ μ 0 = 70 H_0: \mu=\mu_0=70, H_1: \mu \neq \mu_0=70 H0:μ=μ0=70,H1:μ=μ0=70

H 0 H_0 H0 选取检验统计量 T = X ˉ − μ 0 S n ∼ t ( n − 1 ) \mathrm{T}=\frac{\bar{X}-\mu_0}{\frac{S}{\sqrt{n}}} \sim t(n-1) T=n SXˉμ0t(n1),
α = 0.05 ⇒ t α / 2 = t 0.025 ( 36 − 1 ) = 2.0301 \alpha=0.05 \Rightarrow t_{\alpha / 2}=t_{0.025}(36-1)=2.0301 α=0.05tα/2=t0.025(361)=2.0301, 又由 x ˉ = 66.5 、 s = 15 \bar{x}=66.5 、 s=15 xˉ=66.5s=15, 可算得统计量观测值 t t t
t = x ˉ − μ 0 s 2 / n = 66.5 − 70 1 5 2 / 36 = − 1.4 ,  t=\frac{\bar{x}-\mu_0}{\sqrt{s^2 / n}}=\frac{66.5-70}{\sqrt{15^2 / 36}}=-1.4 \text {, } t=s2/n xˉμ0=152/36 66.570=1.4
∣ t ∣ = 1.4 < t 0.025 ( 35 ) = 2.0301 |t|=1.4<t_{0.025}(35)=2.0301 t=1.4<t0.025(35)=2.0301, 接受 H 0 H_0 H0, 故可以认为这次考试全体学生的平均成绩为 70 分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值