高等数学 第九章 多元函数微分学(中)

第九章 多元函数微分学

——made by njtech Melody

六、题型讲解

1.微分学基本概念

①计算极限

用上学期的一元函数极限知识求解,重点关注两个特殊的极限 lim ⁡ x → 0 sin ⁡ x x = 1 lim ⁡ x → ∞ ( 1 + 1 x ) x = e \begin{aligned} &\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 &\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e \end{aligned} x0limxsinx=1xlim(1+x1)x=e

【例】 lim ⁡ x → 0 y → a ( 1 + x y ) sin ⁡ ( x y ) x 2 \lim _{\substack{x \rightarrow 0 \\ y \rightarrow a}}(1+x y)^{\frac{\sin (x y)}{x^{2}}} limx0ya(1+xy)x2sin(xy)

【解】 lim ⁡ x → 0 y → a ( 1 + x y ) sin ⁡ ( x y ) x 2 = lim ⁡ x → 0 y → a [ ( 1 + x y ) 1 x y ] y sin ⁡ ( x y ) x = e lim ⁡ x → 0 y → a y sin ⁡ ( x y ) x e lim ⁡ x → 0 y → a y 2 sin ⁡ ( x y ) x y = e a 2 \lim _{\substack{x \rightarrow 0 \\ y \rightarrow a}}(1+x y)^{\frac{\sin (x y)}{x^{2}}}=\lim _{\substack{x \rightarrow 0 \\ y \rightarrow a}}\left[(1+x y)^{\frac{1}{x y}}\right]^{\frac{y \sin (x y)}{x}}=e^{\lim _{\substack{x \rightarrow 0 \\ y \rightarrow a}}\frac{y \sin (x y)}{x}}e^{\lim _{\substack{x \rightarrow 0 \\ y \rightarrow a}}\frac{y^2 \sin (x y)}{xy}}=e^{a^2} limx0ya(1+xy)x2sin(xy)=limx0ya[(1+xy)xy1]xysin(xy)=elimx0yaxysin(xy)elimx0yaxyy2sin(xy)=ea2

②判断连续性
  • 根据连续性定理,有限个初等函数和有限个基本运算构成的函数必然连续,可以直接说,当函数出现分式的时候才需要讨论

方法一:定义法:判断 lim ⁡ x → x 0 y → y 0 f ( x , y ) 是否等于 f ( x 0 , y 0 ) \lim _{\substack{x \rightarrow x_{0} \\ y \rightarrow y_{0}}} f(x, y) 是否等于f(x_0,y_0) limxx0yy0f(x,y)是否等于f(x0,y0)
方法二:反例法:方法一难以计算时,试着举反例,从某个方向逼近发现值不相等则不连续

③判断可偏导性

(1)计算是否能对x偏导:判断 lim ⁡ x → 0 f ( x , y 0 ) − f ( x 0 , y 0 ) x \lim _{\substack{x \rightarrow 0}} \frac{f(x, y_0)-f(x_0,y_0)}{x} limx0xf(x,y0)f(x0,y0) 是否存在
(2)计算是否能对y偏导:判断 lim ⁡ y → 0 f ( x 0 , y ) − f ( x 0 , y 0 ) y \lim _{\substack{y \rightarrow 0}} \frac{f(x_0, y)-f(x_0,y_0)}{y} limy0yf(x0,y)f(x0,y0) 是否存在

④判断可微性

根据定义 △ z = f ( x 0 + △ x , y 0 + △ y ) − f ( x 0 , y 0 ) = A △ x + B △ y + o ( ρ ) △z=f(x_0+△x,y_0+△y)-f(x_0,y_0)=A△x+B△y+o(ρ) z=f(x0+x,y0+y)f(x0,y0)=Ax+By+o(ρ) 可知,要证可微,则需要判断 lim ⁡ ρ → 0 Δ z − A Δ x − B Δ y ρ 是否 0 \lim _{\rho \rightarrow 0} \frac{\Delta z-A \Delta x-B \Delta y}{\rho}是否0 limρ0ρΔzAΔxBΔy是否0 ,其中: A = f x ′ ( x 0 , y 0 ) , B = f y ′ ( x 0 , y 0 ) A=f_{x}^{\prime}\left(x_{0}, y_{0}\right), \quad B=f_{y}^{\prime}\left(x_{0}, y_{0}\right) A=fx(x0,y0),B=fy(x0,y0)

例如判断函数 f ( x , y ) 在 ( x 0 , y 0 ) f(x,y)在(x_0,y_0) f(x,y)(x0,y0) 处是否可微

(1)计算 A = f x ′ ( x 0 , y 0 ) , B = f y ′ ( x 0 , y 0 ) A=f_{x}^{\prime}\left(x_{0}, y_{0}\right), \quad B=f_{y}^{\prime}\left(x_{0}, y_{0}\right) A=fx(x0,y0),B=fy(x0,y0)
(2)令 ρ = x 2 + y 2 ρ=\sqrt{x^2+y^2} ρ=x2+y2
(3)判断 lim ⁡ ρ → 0 Δ z − A Δ x − B Δ y ρ 是否等于 0 \lim _{\rho \rightarrow 0} \frac{\Delta z-A \Delta x-B \Delta y}{\rho}是否等于0 limρ0ρΔzAΔxBΔy是否等于0.

【例】

讨论函数 f ( x , y ) = { x 2 y x 4 + y 2 , ( x , y ) ≠ ( 0 , 0 ) , 0 , ( x , y ) = ( 0 , 0 ) f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y}{x^{4}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0)\end{array}\right. f(x,y)={x4+y2x2y,0,(x,y)=(0,0),(x,y)=(0,0) 在点 ( 0 , 0 ) (0,0) (0,0) 处的连续性、可偏导性.

【解】因为 lim ⁡ x → 0 y → 0 y = x 2 f ( x , y ) = lim ⁡ x → 0 x 4 x 4 + x 4 = 1 2 , lim ⁡ x → 0 y → 0 y = − x 2 f ( x , y ) = lim ⁡ x → 0 − x 4 x 4 + x 4 = − 1 2 \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0 \\ y=x^{2}}} f(x, y)=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}+x^{4}}=\frac{1}{2}, \quad \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0 \\ y=-x^{2}}} f(x, y)=\lim _{x \rightarrow 0} \frac{-x^{4}}{x^{4}+x^{4}}=-\frac{1}{2} limx0y0y=x2f(x,y)=limx0x4+x4x4=21,limx0y0y=x2f(x,y)=limx0x4+x4x4=21, 所以 lim ⁡ x → 0 y → 0 f ( x , y ) \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y) limx0y0f(x,y) 不存在, 于是 f ( x , y ) f(x, y) f(x,y)

( 0 , 0 ) (0,0) (0,0) 处不连续.(举反例法)

因为 lim ⁡ x → 0 f ( x , 0 ) − f ( 0 , 0 ) x = lim ⁡ x → 0 0 x = 0 \lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} \frac{0}{x}=0 limx0xf(x,0)f(0,0)=limx0x0=0, 所以 f x ′ ( 0 , 0 ) = 0 f_{x}^{\prime}(0,0)=0 fx(0,0)=0, 同理可得 f y ′ ( 0 , 0 ) = 0 f_{y}^{\prime}(0,0)=0 fy(0,0)=0, 即 f ( x , y ) f(x, y) f(x,y) ( 0 , 0 ) (0,0) (0,0) 处可偏导.

【例】

讨论函数 f ( x , y ) = { x y sin ⁡ 1 x 2 + y 2 , ( x , y ) ≠ ( 0 , 0 ) , 0 , ( x , y ) = ( 0 , 0 ) , f(x, y)=\left\{\begin{array}{cl}x y \sin \frac{1}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right. f(x,y)={xysinx2+y2 1,0,(x,y)=(0,0),(x,y)=(0,0), 在点 ( 0 , 0 ) (0,0) (0,0) 处的连续性、可偏导性与可微性.

【解】因为 lim ⁡ x → 0 y → 0 f ( x , y ) = 0 = f ( 0 , 0 ) \lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)=0=f(0,0) limx0y0f(x,y)=0=f(0,0), 所以 f ( x , y ) f(x, y) f(x,y) ( 0 , 0 ) (0,0) (0,0) 处连续.(定义法)

因为 lim ⁡ x → 0 f ( x , 0 ) − f ( 0 , 0 ) x = 0 \lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=0 limx0xf(x,0)f(0,0)=0, 所以 f x ′ ( 0 , 0 ) = 0 f_{x}^{\prime}(0,0)=0 fx(0,0)=0, 同理 f y ′ ( 0 , 0 ) = 0 f_{y}^{\prime}(0,0)=0 fy(0,0)=0, 即 f ( x , y ) f(x, y) f(x,y) ( 0 , 0 ) (0,0) (0,0) 处可偏导.

ρ = x 2 + y 2 , lim ⁡ ρ → 0 f ( x , y ) − f ( 0 , 0 ) − f x ′ ( 0 , 0 ) x − f y ′ ( 0 , 0 ) y ρ = lim ⁡ ρ → 0 x y ρ sin ⁡ 1 ρ \rho=\sqrt{x^{2}+y^{2}}, \lim _{\rho \rightarrow 0} \frac{f(x, y)-f(0,0)-f_{x}^{\prime}(0,0) x-f_{y}^{\prime}(0,0) y}{\rho}=\lim _{\rho \rightarrow 0} \frac{x y}{\rho} \sin \frac{1}{\rho} ρ=x2+y2 ,limρ0ρf(x,y)f(0,0)fx(0,0)xfy(0,0)y=limρ0ρxysinρ1,

因为 0 ⩽ ∣ x y ρ sin ⁡ 1 ρ ∣ ⩽ ∣ x y ∣ ρ ⩽ ρ 2 0 \leqslant\left|\frac{x y}{\rho} \sin \frac{1}{\rho}\right| \leqslant \frac{|x y|}{\rho} \leqslant \frac{\rho}{2} 0 ρxysinρ1 ρxy2ρ lim ⁡ ρ → 0 ρ 2 = 0 \lim _{\rho \rightarrow 0} \frac{\rho}{2}=0 limρ02ρ=0, 所以 lim ⁡ ρ → 0 x y ρ sin ⁡ 1 ρ = 0 \lim _{\rho \rightarrow 0} \frac{x y}{\rho} \sin \frac{1}{\rho}=0 limρ0ρxysinρ1=0, 于是 f ( x , y ) f(x, y) f(x,y) ( 0 , 0 ) (0,0) (0,0) 处可微.

⑤计算全微分

w = f ( x , y , z ) w=f(x, y,z) w=f(x,yz) 可微, 则其全微分为 d w = ∂ f ∂ x   d x + ∂ f ∂ y   d y + ∂ f ∂ z   d z \mathrm{d} w=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y + \frac{\partial f}{\partial z} \mathrm{~d} z dw=xf dx+yf dy+zf dz.

【例】 $ u =x^{2}+\sin \frac{y}{2}+e^{x y z} $ 求全微分

【解】 u x ′ = 2 x + y z e x y z u y ′ = 1 2 cos ⁡ y 2 + x z e x y z u z ′ = x y e x y z ∴ d u = ( 2 x + y z e x y z ) d x + ( 1 2 cos ⁡ y 2 + x z e x y z ) d y + x y e x y z d z u_{x}^{\prime} =2 x+y z e^{x y z} \\ u_{y}^{\prime} =\frac{1}{2} \cos \frac{y}{2}+x z e^{x y z} \\ u_{z}^{\prime} =x y e^{x y z} \\ \therefore d u =\left(2 x+y z e^{x y z}\right) d x+\left(\frac{1}{2} \cos \frac{y}{2}+x z e^{x y z}\right) d y+x y e^{x y z} d z ux=2x+yzexyzuy=21cos2y+xzexyzuz=xyexyzdu=(2x+yzexyz)dx+(21cos2y+xzexyz)dy+xyexyzdz

2.全微分,偏导的逆用——求原函数

  • 利用定义: △ z = f ( x 0 + △ x , y 0 + △ y ) − f ( x 0 , y 0 ) = A △ x + B △ y + o ( ρ ) △z=f(x_0+△x,y_0+△y)-f(x_0,y_0)=A△x+B△y+o(ρ) z=f(x0+x,y0+y)f(x0,y0)=Ax+By+o(ρ) 其中 A = f x ′ ( x 0 , y 0 ) , B = f y ′ ( x 0 , y 0 ) A=f_{x}^{\prime}\left(x_{0}, y_{0}\right), \quad B=f_{y}^{\prime}\left(x_{0}, y_{0}\right) A=fx(x0,y0),B=fy(x0,y0)

​ 当题目中条件满足时,可以读出AB的值

  • 函数的全微分: d z = ∂ f ∂ x   d x + ∂ f ∂ y   d y \mathrm{d} z=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y dz=xf dx+yf dy , 若知道全微分,可以读出 ∂ f ∂ x \frac{\partial f}{\partial x} xf 和 $ \frac{\partial f}{\partial y}$ 从而可以逆推(积分)出原函数

  • 题目给定条件某某的一阶导,二阶导,逆推(积分)出上一阶的函数

  • 注意这里偏积分出来的 “+C” 不是一元积分里面的常数C,而是对应的另一个变量函数

【例 】设 ( a x y + y 2 + 3 ) d x + ( x 2 + b x y − 12 ) d y \left(a x y+y^{2}+3\right) \mathrm{d} x+\left(x^{2}+b x y-12\right) \mathrm{d} y (axy+y2+3)dx+(x2+bxy12)dy 为二元函数 u ( x , y ) u(x, y) u(x,y) 的全微分, u ( x , y ) u(x, y) u(x,y) 二阶连续可偏导且 u ( 0 , 0 ) = 2 u(0,0)=2 u(0,0)=2, 求常数 a , b a, b a,b

的值及函数 u ( x , y ) u(x, y) u(x,y) 的表达式.

【解】二阶连续可偏导,说明混合偏导数相等,抓住这个条件

因为 ( a x y + y 2 + 3 ) d x + ( x 2 + b x y − 12 ) d y \left(a x y+y^{2}+3\right) \mathrm{d} x+\left(x^{2}+b x y-12\right) \mathrm{d} y (axy+y2+3)dx+(x2+bxy12)dy 为函数 u ( x , y ) u(x, y) u(x,y) 的全微分, 所以

∂ u ∂ x = a x y + y 2 + 3 , ∂ u ∂ y = x 2 + b x y − 12 , ∂ 2 u ∂ x ∂ y = a x + 2 y , ∂ 2 u ∂ y ∂ x = 2 x + b y \frac{\partial u}{\partial x}=a x y+y^{2}+3, \quad \frac{\partial u}{\partial y}=x^{2}+b x y-12, \quad \frac{\partial^{2} u}{\partial x \partial y}=a x+2 y, \quad \frac{\partial^{2} u}{\partial y \partial x}=2 x+b y xu=axy+y2+3,yu=x2+bxy12,xy2u=ax+2y,yx2u=2x+by, 由 ∂ 2 u ∂ x ∂ y = ∂ 2 u ∂ y ∂ x \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x} xy2u=yx2u, 得 a = 2 , b = 2 a=2, b=2 a=2,b=2.

因为 ∂ u ∂ x = 2 x y + y 2 + 3 \frac{\partial u}{\partial x}=2 x y+y^{2}+3 xu=2xy+y2+3, 所以 u ( x , y ) = x 2 y + x y 2 + 3 x + φ ( y ) u(x, y)=x^{2} y+x y^{2}+3 x+\varphi(y) u(x,y)=x2y+xy2+3x+φ(y). ∂ u ∂ y = x 2 + 2 x y + φ ′ ( y ) \frac{\partial u}{\partial y}=x^{2}+2 x y+\varphi^{\prime}(y) yu=x2+2xy+φ(y), 由 ∂ u ∂ y = x 2 + 2 x y − 12 \frac{\partial u}{\partial y}=x^{2}+2 x y-12 yu=x2+2xy12, 得

φ ′ ( y ) = − 12 , φ ( y ) = − 12 y + C \varphi^{\prime}(y)=-12, \varphi(y)=-12 y+C φ(y)=12,φ(y)=12y+C, 即 u ( x , y ) = x 2 y + x y 2 + 3 x − 12 y + C u(x, y)=x^{2} y+x y^{2}+3 x-12 y+C u(x,y)=x2y+xy2+3x12y+C, 由 u ( 0 , 0 ) = 2 u(0,0)=2 u(0,0)=2, 得 C = 2 C=2 C=2.

u ( x , y ) = x 2 y + x y 2 + 3 x − 12 y + 2 u(x, y)=x^{2} y+x y^{2}+3 x-12 y+2 u(x,y)=x2y+xy2+3x12y+2.

【例 】设 z = f ( x , y ) z=f(x, y) z=f(x,y) 满足 f ( x , 1 ) = 0 , f y ′ ( x , 0 ) = sin ⁡ x , f y y ′ ′ ( x , y ) = 2 x f(x, 1)=0, f_{y}^{\prime}(x, 0)=\sin x, f_{y y}^{\prime \prime}(x, y)=2 x f(x,1)=0,fy(x,0)=sinx,fyy′′(x,y)=2x, 求 f ( x , y ) f(x, y) f(x,y).

【解】由 f y y ′ ′ ( x , y ) = 2 x f_{y y}^{\prime \prime}(x, y)=2 x fyy′′(x,y)=2x, 得 f y ′ ( x , y ) = 2 x y + φ ( x ) f_{y}^{\prime}(x, y)=2 x y+\varphi(x) fy(x,y)=2xy+φ(x), 则 f y ′ ( x , 0 ) = φ ( x ) f_{y}^{\prime}(x, 0)=\varphi(x) fy(x,0)=φ(x).

f y ′ ( x , 0 ) = sin ⁡ x f_{y}^{\prime}(x, 0)=\sin x fy(x,0)=sinx, 则 φ ( x ) = sin ⁡ x \varphi(x)=\sin x φ(x)=sinx, 即 f y ′ ( x , y ) = 2 x y + sin ⁡ x f_{y}^{\prime}(x, y)=2 x y+\sin x fy(x,y)=2xy+sinx.

于是 f ( x , y ) = x y 2 + y sin ⁡ x + ψ ( x ) f(x, y)=x y^{2}+y \sin x+\psi(x) f(x,y)=xy2+ysinx+ψ(x), 则 f ( x , 1 ) = x + sin ⁡ x + ψ ( x ) f(x, 1)=x+\sin x+\psi(x) f(x,1)=x+sinx+ψ(x),

解得 ψ ( x ) = − x − sin ⁡ x \psi(x)=-x-\sin x ψ(x)=xsinx, 故 f ( x , y ) = x y 2 + y sin ⁡ x − x − sin ⁡ x f(x, y)=x y^{2}+y \sin x-x-\sin x f(x,y)=xy2+ysinxxsinx.

【例 】设 z = f ( x , y ) z=f(x, y) z=f(x,y) 满足 f ( x , 0 ) = x , f ( 0 , y ) = y 2 , f x y ′ ′ ( x , y ) = x + y f(x, 0)=x, f(0, y)=y^{2}, f_{x y}^{\prime \prime}(x, y)=x+y f(x,0)=x,f(0,y)=y2,fxy′′(x,y)=x+y, 求 f ( x , y ) f(x, y) f(x,y).

【解】由 f x y ′ ′ ( x , y ) = x + y f_{x y}^{\prime \prime}(x, y)=x+y fxy′′(x,y)=x+y, 得 f x ′ ( x , y ) = x y + 1 2 y 2 + φ ( x ) f_{x}^{\prime}(x, y)=x y+\frac{1}{2} y^{2}+\varphi(x) fx(x,y)=xy+21y2+φ(x), 于是
f ( x , y ) = 1 2 x 2 y + 1 2 x y 2 + ∫ 0 x φ ( t ) d t + ψ ( y ) . f(x, y)=\frac{1}{2} x^{2} y+\frac{1}{2} x y^{2}+\int_{0}^{x} \varphi(t) \mathrm{d} t+\psi(y) . f(x,y)=21x2y+21xy2+0xφ(t)dt+ψ(y).
f ( 0 , y ) = y 2 f(0, y)=y^{2} f(0,y)=y2, 得 ψ ( y ) = y 2 \psi(y)=y^{2} ψ(y)=y2, 再由 f ( x , 0 ) = x f(x, 0)=x f(x,0)=x, 得 ∫ 0 x φ ( x ) d x = x \int_{0}^{x} \varphi(x) \mathrm{d} x=x 0xφ(x)dx=x, 故
f ( x , y ) = 1 2 x 2 y + 1 2 x y 2 + x + y 2 . f(x, y)=\frac{1}{2} x^{2} y+\frac{1}{2} x y^{2}+x+y^{2} . f(x,y)=21x2y+21xy2+x+y2.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值