Ants 【POJ - 3565】【KM算法+四边形不等式】

题目链接


  题意:有 N 个蚂蚁,N 个苹果,要在每个蚂蚁和一个相应的苹果之间连边,问如何给蚂蚁分配苹果,可以使这些边不相交。

  思路:首先,推一下,如果相交的话会发生什么事情,然后我们来避免相交。

  如图,AD和BC相交,我们可以看到,此时构成了一个四边形,我们要让A、B和C、D不相交的话,需要让A选择C,让B选择D。

  那么,推导一下AC、BD、AD、BC之间的关系:

OA + OC > AC

OB + OD > BD

  连立,得:

AD + BC > AC + BD

  所以,如果我们想要去满足这个条件的话,我们需要选择的是让链接边的距离变成最小,也就是AC + BD < AD + BC这个形式。

  那么,问题转换成最小权匹配。我们要尽可能的满足最小权匹配,就一定是可以满足题目要求的。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
//#define INF 0x3f3f3f3f
#define INF 1e9 + 7.
#define eps 1e-8
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
#define Min3(a, b, c) min(a, min(b, c))
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 105;
int N;
struct KM
{
    int n; double mp[maxN][maxN]; int link_x[maxN], link_y[maxN];
    bool vis_x[maxN], vis_y[maxN];
    int que[maxN], top, fail, pre[maxN];
    double hx[maxN], hy[maxN], slk[maxN];
    bool check(int i)
    {
        vis_x[i] = true;
        if(link_x[i])
        {
            que[fail++] = link_x[i];
            vis_y[link_x[i]] = true;
            return true;
        }
        while(i)
        {
            link_x[i] = pre[i];
            swap(i, link_y[pre[i]]);
        }
        return false;
    }
    void bfs(int S)
    {
        for(int i=1; i<=n; i++)
        {
            slk[i] = INF;
            vis_x[i] = vis_y[i] = false;
        }
        top = 0; fail = 1; que[0] = S;
        vis_y[S] = true;
        while(true)
        {
            double d = 0.;
            while(top < fail)
            {
                for(int i=1, j = que[top++]; i<=n; i++)
                {
                    if(!vis_x[i] && slk[i] >= (d = hx[i] + hy[j] - mp[i][j]))
                    {
                        pre[i] = j;
                        if(fabs(d) > eps) slk[i] = d;
                        else if(!check(i)) return;
                    }
                }
            }
            d = INF;
            for(int i=1; i<=n; i++)
            {
                if(!vis_x[i] && d > slk[i]) d = slk[i];
            }
            for(int i=1; i<=n; i++)
            {
                if(vis_x[i]) hx[i] += d;
                else slk[i] -= d;
                if(vis_y[i]) hy[i] -= d;
            }
            for(int i=1; i<=n; i++)
            {
                if(!vis_x[i] && !slk[i] && !check(i)) return;
            }
        }
    }
    void Init()
    {
        for(int i=1; i<=n; i++)
        {
            link_x[i] = link_y[i] = 0;
            hy[i] = slk[i] = 0;
            vis_y[i] = false;
        }
        for(int i=1; i<=n; i++)
        {
            hx[i] = 0;
            for(int j=1; j<=n; j++)
            {
                if(hx[i] < mp[i][j]) hx[i] = mp[i][j];
            }
        }
    }
    void solve()
    {
        n = N;
        Init();
        for(int i=1; i<=n; i++) bfs(i);
        for(int i=1; i<=n; i++) printf("%d\n", link_x[i]);
    }
}km;
struct node
{
    double x, y;
    node(double a=0, double b=0):x(a), y(b) {}
    inline void _get() { scanf("%lf%lf", &x, &y); }
}ant[maxN], apple[maxN];
double dis(node e1, node e2) { return sqrt((e1.x - e2.x) * (e1.x - e2.x) + (e1.y - e2.y) * (e1.y -e2.y)); }
int main()
{
    scanf("%d", &N);
    for(int i=1; i<=N; i++) ant[i]._get();
    for(int i=1; i<=N; i++) apple[i]._get();
    for(int i=1; i<=N; i++)
    {
        for(int j=1; j<=N; j++)
        {
            km.mp[i][j] = -dis(ant[i], apple[j]);
        }
    }
    km.solve();
    return 0;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值