题目链接
题意:有 N 个蚂蚁,N 个苹果,要在每个蚂蚁和一个相应的苹果之间连边,问如何给蚂蚁分配苹果,可以使这些边不相交。
思路:首先,推一下,如果相交的话会发生什么事情,然后我们来避免相交。
如图,AD和BC相交,我们可以看到,此时构成了一个四边形,我们要让A、B和C、D不相交的话,需要让A选择C,让B选择D。
那么,推导一下AC、BD、AD、BC之间的关系:
连立,得:
所以,如果我们想要去满足这个条件的话,我们需要选择的是让链接边的距离变成最小,也就是这个形式。
那么,问题转换成最小权匹配。我们要尽可能的满足最小权匹配,就一定是可以满足题目要求的。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
//#define INF 0x3f3f3f3f
#define INF 1e9 + 7.
#define eps 1e-8
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
#define Min3(a, b, c) min(a, min(b, c))
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 105;
int N;
struct KM
{
int n; double mp[maxN][maxN]; int link_x[maxN], link_y[maxN];
bool vis_x[maxN], vis_y[maxN];
int que[maxN], top, fail, pre[maxN];
double hx[maxN], hy[maxN], slk[maxN];
bool check(int i)
{
vis_x[i] = true;
if(link_x[i])
{
que[fail++] = link_x[i];
vis_y[link_x[i]] = true;
return true;
}
while(i)
{
link_x[i] = pre[i];
swap(i, link_y[pre[i]]);
}
return false;
}
void bfs(int S)
{
for(int i=1; i<=n; i++)
{
slk[i] = INF;
vis_x[i] = vis_y[i] = false;
}
top = 0; fail = 1; que[0] = S;
vis_y[S] = true;
while(true)
{
double d = 0.;
while(top < fail)
{
for(int i=1, j = que[top++]; i<=n; i++)
{
if(!vis_x[i] && slk[i] >= (d = hx[i] + hy[j] - mp[i][j]))
{
pre[i] = j;
if(fabs(d) > eps) slk[i] = d;
else if(!check(i)) return;
}
}
}
d = INF;
for(int i=1; i<=n; i++)
{
if(!vis_x[i] && d > slk[i]) d = slk[i];
}
for(int i=1; i<=n; i++)
{
if(vis_x[i]) hx[i] += d;
else slk[i] -= d;
if(vis_y[i]) hy[i] -= d;
}
for(int i=1; i<=n; i++)
{
if(!vis_x[i] && !slk[i] && !check(i)) return;
}
}
}
void Init()
{
for(int i=1; i<=n; i++)
{
link_x[i] = link_y[i] = 0;
hy[i] = slk[i] = 0;
vis_y[i] = false;
}
for(int i=1; i<=n; i++)
{
hx[i] = 0;
for(int j=1; j<=n; j++)
{
if(hx[i] < mp[i][j]) hx[i] = mp[i][j];
}
}
}
void solve()
{
n = N;
Init();
for(int i=1; i<=n; i++) bfs(i);
for(int i=1; i<=n; i++) printf("%d\n", link_x[i]);
}
}km;
struct node
{
double x, y;
node(double a=0, double b=0):x(a), y(b) {}
inline void _get() { scanf("%lf%lf", &x, &y); }
}ant[maxN], apple[maxN];
double dis(node e1, node e2) { return sqrt((e1.x - e2.x) * (e1.x - e2.x) + (e1.y - e2.y) * (e1.y -e2.y)); }
int main()
{
scanf("%d", &N);
for(int i=1; i<=N; i++) ant[i]._get();
for(int i=1; i<=N; i++) apple[i]._get();
for(int i=1; i<=N; i++)
{
for(int j=1; j<=N; j++)
{
km.mp[i][j] = -dis(ant[i], apple[j]);
}
}
km.solve();
return 0;
}