pyrtorch学习笔记(一)

学而不思则罔,从今天开始做笔记(2022年7月10号)

训练 y = x*w +b 的代码

一、数据

x_data = torch.Tensor([[1.0],[2.0],[3.0]])    #三个样本数据 1,2,3
y_data = torch.Tensor([[2.0],[4.0],[6.0]])    #三个目标数据 2,4,6

        [[1.0],[2.0],[3.0]代表三个样本数据,每个样本数据一个值。不同于[1,2,3]。注意区分

二、模型

class LinearModel(nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()
        self.linear = nn.Linear(1,1)    #(1,1)代表输入输出的维度
    def forward(self,x):
        y_pred = self.linear(x)
        return y_pred
model = LinearModel()    #模型初始化

         linear(in_features,out_features)        #输入数据维度,输出数据维度

三、定义损失函数与优化器

criterion = nn.MSELoss(size_average=False)    #只求损失函数之和不求平均
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)

四、训练

for epoch in range(100):    #训练100次
     #print('weight.item()',model.linear.weight.item())
     #print('bias.item()', model.linear.bias.item())
     #系统随机给一个权重,与偏置,打印一下看看
     #weight.item() 0.31775128841400146
     #bias.item() 0.3106563091278076
    y_pred = model(x_data)
     #print('y_pred',y_pred)    #计算w*x+b
     #y_pred: tensor([[0.6284],
        [0.9462],
        [1.2639]], grad_fn=<AddmmBackward0>)

    loss = criterion(y_pred,y_data)
    print('epoch:',epoch,loss.item())
     #epoch: 0 33.63775634765625
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print('w:',model.linear.weight.item())
print('b:',model.linear.bias.item())

五、预测

x_test = torch.Tensor([4.0])
y_test = model(x_test)
print('y_pred:',y_test.data)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值