空洞卷积详解(Dilated/Atrous Convolution)

  空洞卷积,广泛应用于语义分割与目标检测等任务中,语义分割中经典的 deeplab 系列对空洞卷积进行了深入的思考。空洞卷积可以任意扩大感受野,且不需要引入额外参数。
  空洞卷积就是在标准的 convolution map 里注入空洞,以此来增加 reception field。相比标准的 convolution,dilated convolution 多了一个称为 dilation rate 的 hyper-parameter,指的是kernel 的间隔数量。标准卷积与空洞卷积在实现上基本相同,标准卷积可以看做空洞卷积的特殊形式(正常的 convolution 是 dilatation rate = 1)。空洞卷积在卷积核中间填充 0,其主要有实现方式有两种,为卷积核填充 0输入等间隔采样
Deep CNN 对于其他任务还有一些致命性的缺陷

  • Up-sampling / pooling layer is deterministic;
  • 内部数据结构丢失;空间层级化信息丢失;
  • 小物体信息无法重建 (假设有四个pooling layer,则任何小于 2 4 = 16 2^4 = 16 24=16 pixel 的物体信息将理论上无法重建)。

空洞卷积的作用主要有

  • 扩大感受野。降采样可以增大感受野,但空间分辨率随之降低。可使用空洞卷积扩大感受野,同时保证分辨率;
  • 捕获多尺度上下文信息。空洞卷积中可通过设置不同的 dilation rate 调节感受野大小,即获取多尺度信息。多尺度信息在视觉任务中相当重要。
空洞卷积

HDC

ASPP

ASPP

先通过 k ˉ = k + ( k − 1 ) ( r − 1 ) \rm \bar{k}=k+(k-1)(r-1) kˉ=k+(k1)(r1) 确定空洞卷积的实际卷积核大小 k ˉ \rm \bar{k} kˉ,再确定输出的尺寸。

【参考】

  1. 总结-空洞卷积(Dilated/Atrous Convolution);
  2. 如何理解空洞卷积(dilated convolution)?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值