利用scheduler实现learning-rate学习率动态变化

记录一下schedule设置学习率变化过程的使用和方法

优化器optimizer

pytorch提供数种优化器的实现,优化器根据计算图的结构,进行梯度计算,根据loss信息实现自动的BP过程。常用的就是Adam,将网络参数传入,设置初始的learning-rate学习率即可:

optimizer = torch.optim.Adam(model.parameters(), lr=args.learn_rate)

在训练中:

optimizer.zero_grad()
loss.backward()
optimizer.step()

即可实现BP环节。

scheduler

lr_scheduler提供了随着训练的迭代次数对optimizer的学习率进行修改的类和方法,通过在循环过程中调用:

scheduler.step()

每次调用step方法,类中内置的计数器就会+1,即epoch轮次数增加。根据不同的当前epoch,scheduler类会对optimizer中的learning-rate进行修改。利用optimizer.param_groups[0]['lr']可查看当前的学习率大小。

这边整理三个常用的类:LambdaLRStepLRMultiStepLR。个人觉得这三种就能应对大部分的调整需求了。

LambdaLR

完整的类包为torch.optim.lr_scheduler.LambdaLR。该类实现的学习率变化策略为当前学习率乘以值λλ的大小由一个自定函数确定,该函数输入为epoch,即类中的循环次数计数(也就是调用scheduler.step()的次数)。

learing-rate = λ * learing-rate

LambdaLR(optimizer, lr_lambda, last_epoch=-1)

其中lr_lambda为λ的计算函数。
给个使用例子:

# 简单写个Moudle生成parameter
class MyModel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值