【随机过程】15 - 离散时间马尔科夫链状态的常返性

离散时间马尔科夫链状态的常返性

1. 马尔科夫链的状态

  这部分来探讨马尔科夫链状态的分类问题

Classification of Status \text{Classification of Status} Classification of Status

{ Z n } ⇒ { 1 , 2 , 3 , . . . } \{ Z_n\} \Rightarrow \{1,2,3,... \} {Zn}{1,2,3,...}

1.1 常返态的定义

  马尔科夫链的状态包括常返态和非常返态。直观上的定义就是

  • 常返态:经常返回来的状态,一旦马尔科夫链来到这个状态就不容易走,一旦离开这个状态又经常回来
  • 非常返态:马尔科夫链不容易来到这个状态,几乎不回来,近似被抛弃的状态

Recurrent Stauts Non-Recurrent Status \text{Recurrent Stauts} \\ \text{Non-Recurrent Status} Recurrent StautsNon-Recurrent Status

  常返态对于马尔科夫链稳态分析非常重要,因为我们只需要盯着常返态看就行了。

  下面我们对常返态下一个解析上的定义

i R e c u r r e n t ⇔ ∑ k = 1 ∞ f i i ( k ) = 1 ( a ) i N o n − R e c u r r e n t ⇔ ∑ k = 1 ∞ f i i ( k ) < 1 ( i ) i \quad Recurrent \Leftrightarrow \sum_{k=1}^{\infty} f_{ii}(k) = 1 \quad\quad (a) \\ i \quad Non-Recurrent \Leftrightarrow \sum_{k=1}^{\infty} f_{ii}(k) < 1 \quad\quad (i) iRecurrentk=1fii(k)=1(a)iNonRecurrentk=1fii(k)<1(i)

  常返态的定义有很多,但是都是可以相互等价的,这里对常返态的定义是通过首达概率定义的。fii(k)是从i状态出发,经过k步首次回到i的概率

  这里需要做两点注解

  • 首达概率求和不会超过1
  • 转移概率求和等于多少都是有可能的

∑ k = 1 ∞ f i i ( k ) ≤ 1 ∑ k = 1 ∞ P i i ( k ) ∈ [ 0 , ∞ ) ∑ k = 1 ∞ f i i ( k ) ≤ ∑ k = 1 ∞ P i i ( k ) ( i i ) \sum_{k=1}^{\infty}f_{ii}(k) \leq 1 \\ \sum_{k=1}^{\infty}P_{ii}(k) \in [0,\infty) \\ \sum_{k=1}^{\infty}f_{ii}(k) \leq \sum_{k=1}^{\infty}P_{ii}(k) \quad\quad (ii) k=1fii(k)1k=1Pii(k)[0,)k=1fii(k)k=1Pii(k)(ii)

  我们可以这样考虑这个概率。首达概率是转移概率的一个子集,因此首达概率一定小于转移概率。而且,不同的k的首达概率之间没有包含关系;而不同k的转移概率之间是有包含关系的,相当于会连加很多回。

1.2 常返态的判据

  下面我们想知道如何判断一个状态是常返态。因为,首达概率其实是很难计算的,ck方程不能拆解出首达概率,因此,如果使用常返态的定义,用首达概率判断常返态是行不通的。我们希望从常返态的定义出发,将首达概率转换为转移概率做判据。

  我们用转移概率的时间分解方程来进行分析

P i j ( n ) = ∑ k = 1 n f i j ( k ) P j j ( n − k ) Temporal ( i i i ) P_{ij}(n) = \sum_{k=1}^n f_{ij}(k) P_{jj}(n-k) \quad \text{Temporal} \quad\quad (iii) Pij(n)=k=1nfij(k)Pjj(nk)Temporal(iii)

  对于空间分解方程来说,可以看做是矩阵的乘法,而这里面是对时间分解的,对k来说是个离散的卷积。因此我们应该使用变换域分析来看待这个事情。

  连续时间的变换域分析可以使用傅里叶变换和拉普拉斯变换。而离散时间的变换域分析可以使用Z变换或者离散时间傅里叶变换。

  这里我们使用Z变换来处理

P i j ( Z ) = ∑ n = 0 ∞ P i j ( n ) Z n f i j ( Z ) = ∑ n = 1 ∞ f i j ( n ) Z n P_{ij}(Z) = \sum_{n=0}^{\infty}P_{ij}(n)Z^{n} \\ f_{ij}(Z) = \sum_{n=1}^{\infty}f_{ij}(n)Z^n Pij(Z)=n=0Pij(n)Znfij(Z)=n=1fij(n)Zn

  这里我们注意一下,上面的展开是从0开始,下面的展开是从1开始。因此,我们需要定义一下零步转移概率和零步首达概率

P i j ( 0 ) = { 1 i = j 0 i = j = δ i j P_{ij}(0) = \begin{cases} 1 & i=j \\ 0 & i \cancel = j \end{cases} = \delta_{ij} Pij(0)={10i=ji= j=δij
  这是零步转移概率的定义,从i出发经过0步到达j,如果i和j相同,必然概率是1,而如果1和j不相同,经过零步必然到达不了,概率就是0。

f i j ( 0 ) = 0 f_{ij}(0) =0 fij(0)=0

  零步首达概率就是,从i出发经过0步首次到达j的概率,因此如果i和j相同,都没有离开,也就谈不上首次到达,因此零步首达概率无论如何都是0

  我们对时间分解等式两边同时做Z变换

P i j ( n ) = ∑ k = 1 n f i j ( k ) P j j ( n − k ) P_{ij}(n) = \sum_{k=1}^n f_{ij}(k) P_{jj}(n-k) Pij(n)=k=1nfij(k)Pjj(nk)

∑ n = 0 ∞ P i j ( n ) Z n = ∑ n = 0 ∞ ( ∑ k = 1 n f i j ( k ) P j j ( n − k ) ) Z n = ∑ n = 0 ∞ ∑ k = 1 n f i j ( k ) Z k P j j ( n − k ) Z n − k \sum_{n=0}^{\infty} P_{ij}(n)Z^n = \sum_{n=0}^{\infty} (\sum_{k=1}^n f_{ij}(k)P_{jj}(n-k))Z^n \\ =\sum_{n=0}^{\infty} \sum_{k=1}^n f_{ij}(k)Z^{k}P_{jj}(n-k)Z^{n-k} n=0Pij(n)Zn=n=0(k=1nfij(k)Pjj(nk))Zn=n=0k=1nfij(k)ZkPjj(nk)Znk

  我们想交换后面式子的求和顺序,如果k和n都是1,就好交换,但是这里n那里多了一块

在这里插入图片描述

  所以我们要把式子变一下,然后交换求和次序

∑ n = 0 ∞ P i j ( n ) Z n = P i j ( 0 ) Z 0 + ∑ n = 1 ∞ P i j ( n ) Z n = P i j ( 0 ) + ∑ n = 1 ∞ ∑ k = 1 n f i j ( k ) Z k P j j ( n − k ) Z n − k = δ i j + ∑ n = 1 ∞ ∑ k = 1 n f i j ( k ) Z k P j j ( n − k ) Z n − k \sum_{n=0}^{\infty} P_{ij}(n)Z^n = P_{ij}(0)Z^0 + \sum_{n=1}^{\infty} P_{ij}(n)Z^n \\ = P_{ij}(0) +\sum_{n=1}^{\infty} \sum_{k=1}^n f_{ij}(k)Z^{k} P_{jj}(n-k) Z^{n-k} \\ = \delta_{ij}+\sum_{n=1}^{\infty} \sum_{k=1}^n f_{ij}(k)Z^{k} P_{jj}(n-k) Z^{n-k} n=0Pij(n)Zn=Pij(0)Z0+n=1Pij(n)Zn=Pij(0)+n=1k=1nfij(k)ZkPjj(nk)Znk=δij+n=1k=1nfij(k)ZkPjj(nk)Znk

在这里插入图片描述

∑ n = 1 ∞ ∑ k = 1 n f i j ( k ) Z k P j j ( n − k ) Z n − k = ∑ k = 1 ∞ ∑ n = k ∞ f i j ( k ) Z k P j j ( n − k ) Z n − k \sum_{n=1}^{\infty} \sum_{k=1}^n f_{ij}(k)Z^{k} P_{jj}(n-k) Z^{n-k} \\ =\sum_{k=1}^{\infty}\sum_{n=k}^\infty f_{ij}(k)Z^{k} P_{jj}(n-k) Z^{n-k} n=1k=1nfij(k)ZkPjj(nk)Znk=k=1n=kfij(k)ZkPjj(nk)Znk

  代入式子

∑ n = 0 ∞ P i j ( n ) Z n = δ i j + ∑ n = 1 ∞ ∑ k = 1 n f i j ( k ) Z k P j j ( n − k ) Z n − k = δ i j + ∑ k = 1 ∞ ∑ n = k ∞ f i j ( k ) Z k P j j ( n − k ) Z n − k = δ i j + ∑ k = 1 ∞ f i j ( k ) Z k ∑ n = k ∞ P j j ( n − k ) Z n − k ⇒ P i j ( Z ) = δ i j + F i j ( Z ) P j j ( Z ) ( i v ) \sum_{n=0}^{\infty} P_{ij}(n)Z^n = \delta_{ij}+\sum_{n=1}^{\infty} \sum_{k=1}^n f_{ij}(k)Z^{k} P_{jj}(n-k) Z^{n-k} \\ = \delta_{ij} +\sum_{k=1}^{\infty}\sum_{n=k}^\infty f_{ij}(k)Z^{k} P_{jj}(n-k) Z^{n-k} \\ =\delta_{ij}+\sum_{k=1}^{\infty}f_{ij}(k)Z^{k} \sum_{n=k}^\infty P_{jj}(n-k) Z^{n-k} \\ \Rightarrow P_{ij}(Z)= \delta_{ij} + F_{ij}(Z) P_{jj}(Z) \quad\quad (iv) n=0Pij(n)Zn=δij+n=1k=1nfij(k)ZkPjj(nk)Znk=δij+k=1n=kfij(k)ZkPjj(nk)Znk=δij+k=1fij(k)Zkn=kPjj(nk)ZnkPij(Z)=δij+Fij(Z)Pjj(Z)(iv)

  我们就得到了转移概率时间分解的Z变换表示式。

  我们令i=j,并且令Z趋近于1,就可以得到转移概率和首达概率的变换关系

Let  i = j P i i ( Z ) = 1 + F i i ( Z ) P i i ( Z ) P i i ( Z ) = 1 1 − F i i ( Z ) ∑ n = 0 ∞ P i i ( n ) Z n = 1 1 − ∑ n = 1 ∞ f i i ( n ) Z n Let  Z → 1 ∑ n = 0 ∞ P i i ( n ) = 1 1 − ∑ n = 1 ∞ f i i ( n ) \text{Let } i = j \\ P_{ii}(Z) = 1 + F_{ii}(Z) P_{ii}(Z) \\ P_{ii}(Z) = \frac{1}{1-F_{ii}(Z)} \\ \sum_{n=0}^{\infty} P_{ii}(n)Z^n = \frac{1}{1-\sum_{n=1}^{\infty} f_{ii}(n)Z^n } \\ \text{Let } Z \rightarrow 1 \\ \sum_{n=0}^{\infty} P_{ii}(n) = \frac{1}{1-\sum_{n=1}^{\infty} f_{ii}(n) } Let i=jPii(Z)=1+Fii(Z)Pii(Z)Pii(Z)=1Fii(Z)1n=0Pii(n)Zn=1n=1fii(n)Zn1Let Z1n=0Pii(n)=1n=1fii(n)1

  我们可以看出来,如果i状态是常返的,首达概率的累加和是1,转移概率的累加和就是发散的。而如果i状态是非常返的,首达概率累加和就是小于1,转移概率的累加和就是收敛的。

  于是我们就基于常返态的定义,推导出了常返态的判据

Definition i R e c u r r e n t ⇔ ∑ k = 1 ∞ f i i ( k ) = 1 i N o n − R e c u r r e n t ⇔ ∑ k = 1 ∞ f i i ( k ) < 1 \text{Definition} i \quad Recurrent \Leftrightarrow \sum_{k=1}^{\infty} f_{ii}(k) = 1 \\ i \quad Non-Recurrent \Leftrightarrow \sum_{k=1}^{\infty} f_{ii}(k) < 1 DefinitioniRecurrentk=1fii(k)=1iNonRecurrentk=1fii(k)<1

Criteria For Recurrent ∑ n = 0 ∞ P i i ( n ) = { ∞ R e c u r r e n t < ∞ N o n − R e c u r r e n t ( b ) \text{Criteria For Recurrent} \\ \sum_{n=0}^{\infty} P_{ii}(n) = \begin{cases} \infty & Recurrent \\ <\infty & Non-Recurrent \end{cases} \quad\quad (b) Criteria For Recurrentn=0Pii(n)={<RecurrentNonRecurrent(b)

1.3 常返态的性质

  下面介绍与常返性有关的一些性质

1.3.1 相通与常返性

  如果i和j是相通的,i和j必定有相同的常返性

  我们证明一下这个结论

i ↔ j ⇒ ∃ m , n P i j ( m ) > 0 , P j i ( n ) > 0 Then ∑ k = 0 ∞ P i i ( k ) = P i i ( 0 ) + . . . + P i i ( m + n − 1 ) + ∑ k = 0 ∞ P i i ( m + n + k ) ⇒ ∑ k = 0 ∞ P i i ( k ) ≥ ∑ k = 0 ∞ P i i ( m + n + k ) ≥ ∑ k = 0 ∞ P i j ( m ) P j j ( n ) P j i ( k ) = P i j ( m ) ( ∑ k = 0 ∞ P j j ( k ) ) P j i ( n ) i \leftrightarrow j \Rightarrow \exist m,n \quad P_{ij}(m)>0 , P_{ji}(n) >0 \text{Then} \\ \sum_{k=0}^{\infty}P_{ii}(k) = P_{ii}(0) + ...+ P_{ii}(m+n-1) +\sum_{k=0}^{\infty}P_{ii}(m+n+k) \\ \Rightarrow \sum_{k=0}^{\infty}P_{ii}(k) \geq \sum_{k=0}^{\infty}P_{ii}(m+n+k) \geq \sum_{k=0}^{\infty}P_{ij}(m)P_{jj}(n)P_{ji}(k) \\ = P_{ij}(m) (\sum_{k=0}^{\infty}P_{jj}(k)) P_{ji}(n) ijm,nPij(m)>0,Pji(n)>0Thenk=0Pii(k)=Pii(0)+...+Pii(m+n1)+k=0Pii(m+n+k)k=0Pii(k)k=0Pii(m+n+k)k=0Pij(m)Pjj(n)Pji(k)=Pij(m)(k=0Pjj(k))Pji(n)

  于是有这样的推论

P i j ( m ) > 0 P j i ( n ) > 0 Assuming j Recurrent ∑ n = 0 ∞ P j j ( n ) = ∞ ⇒ P i j ( m ) ( ∑ k = 0 ∞ P j j ( k ) ) P j i ( n ) = ∞ ⇒ ∑ k = 0 ∞ P i i ( k ) ≥ P i j ( m ) ( ∑ k = 0 ∞ P j j ( k ) ) P j i ( n ) = ∞ ⇒ i Recurrent P_{ij}(m) >0 \quad P_{ji}(n) >0 \\ \text{Assuming j Recurrent} \\ \sum_{n=0}^{\infty} P_{jj}(n) = \infty \\ \Rightarrow P_{ij}(m) (\sum_{k=0}^{\infty}P_{jj}(k)) P_{ji}(n) = \infty \\ \Rightarrow \sum_{k=0}^{\infty}P_{ii}(k) \geq P_{ij}(m) (\sum_{k=0}^{\infty}P_{jj}(k)) P_{ji}(n) = \infty \\ \Rightarrow \text{i Recurrent} Pij(m)>0Pji(n)>0Assuming j Recurrentn=0Pjj(n)=Pij(m)(k=0Pjj(k))Pji(n)=k=0Pii(k)Pij(m)(k=0Pjj(k))Pji(n)=i Recurrent

  因此,如果j是常返的,i必定也是常返的。反过来也成立,只需要把i和j调换位置证明即可。

  于是,我们证明了:如果i和j是相通的,i和j必定有相同的常返性

1.3.2 转移概率与常返性

  我们想说明两个与转移概率与常返态的关系。如果i是非常返态,从i经过n步回到i的概率是0,并且从k经过n步回到i的概率也是0

i  Non-Recurrent ⇒ P i i ( n ) → 0 ( n → ∞ ) ⇒ P k i ( n ) → 0 ( n → ∞ ) i \text{ Non-Recurrent} \\ \Rightarrow P_{ii}(n) \rightarrow 0 (n\rightarrow \infty) \\ \Rightarrow P_{ki}(n) \rightarrow 0 (n\rightarrow \infty) i Non-RecurrentPii(n)0(n)Pki(n)0(n)

  对于第一个式子的证明

∑ n = 0 ∞ P i i ( n ) < ∞ i Non-Recurrent ⇒ P i i ( n ) → 0 ( n → ∞ ) \sum_{n=0}^{\infty} P_{ii}(n) <\infty \quad \text{i Non-Recurrent} \\ \Rightarrow P_{ii}(n) \rightarrow 0 (n\rightarrow \infty) n=0Pii(n)<i Non-RecurrentPii(n)0(n)

  如果i是非常返态,必定n步自转移概率收敛,因此无穷远处的通项必定是0,这是无穷级数的性质。

  然后证明第二个式子

  通过Z变换,我们已经得到了(iv)式子,这里我们令i不等于j,并且Z趋近于1

P i j ( Z ) = δ i j + F i j ( Z ) P i j ( Z ) Let  i = j Z → 1 P i j ( Z ) = F i j ( Z ) P j j ( Z ) ∑ n = 0 ∞ P i j ( n ) = ∑ n = 1 ∞ f i j ( n ) ∑ n = 0 ∞ P j j ( n ) P_{ij}(Z)= \delta_{ij} + F_{ij}(Z) P_{ij}(Z) \\ \text{Let } i \cancel = j \quad Z \rightarrow 1 \\ P_{ij}(Z)= F_{ij}(Z) P_{jj}(Z) \\ \sum_{n=0}^{\infty}P_{ij}(n) = \sum_{n=1}^{\infty}f_{ij}(n) \sum_{n=0}^{\infty}P_{jj}(n) Pij(Z)=δij+Fij(Z)Pij(Z)Let i= jZ1Pij(Z)=Fij(Z)Pjj(Z)n=0Pij(n)=n=1fij(n)n=0Pjj(n)

  由于首达时间的累加和肯定是小于1的,因此jj的转移概率与ij的转移概率和具有相同的收敛性

∑ n = 1 ∞ f i j ( n ) ≤ 1 ∑ n = 0 ∞ P j j ( n ) ∼ ∑ n = 0 ∞ P i j ( n ) \sum_{n=1}^{\infty}f_{ij}(n) \leq 1 \\ \sum_{n=0}^{\infty}P_{jj}(n) \sim \sum_{n=0}^{\infty}P_{ij}(n) n=1fij(n)1n=0Pjj(n)n=0Pij(n)

  如果j是非常返态,必定Pjj累加和收敛,因此Pij累加和必定也收敛,如果Pij累加和收敛,必定有

∑ n = 0 ∞ P j j ( n ) < ∞ ⇒ ∑ n = 0 ∞ P i j ( n ) < ∞ ⇒ l i m n → 0 P i j ( n ) = 0 \sum_{n=0}^{\infty}P_{jj}(n) < \infty \\ \Rightarrow \sum_{n=0}^{\infty}P_{ij}(n)<\infty \\ \Rightarrow lim_{n\rightarrow 0} P_{ij}(n) = 0 n=0Pjj(n)<n=0Pij(n)<limn0Pij(n)=0

  于是就证明了第二个结论。

  这个结论证明了,如果你自己都不热爱自己的家,都不愿意回去,其他人更不会热爱你的家,更不愿意回去。

1.3.3 有限状态与常返性

  我们有这样的结论,如果一个马尔科夫链只有有限的状态,则这其中一定存在常返态。

Finite States ⇒ ∃ Recurrent State \text{Finite States} \Rightarrow \exist \quad \text{Recurrent State} \\ Finite StatesRecurrent State

  我们考虑n步转移概率矩阵,转移概率矩阵行的和是1

P ( n ) = ( P i j ( n ) ) i j P i j ( n ) ≥ 0 ∑ j P i j ( n ) = 1 ∀ i P(n) = (P_{ij}(n))_{ij} \\ P_{ij}(n) \geq 0 \\ \sum_j P_{ij}(n) = 1 \quad \forall i P(n)=(Pij(n))ijPij(n)0jPij(n)=1i

  由于只有有限状态,因此转移概率矩阵一定是可以表示出来的。转移概率矩阵行的和是1,根据1.3.2的性质,如果n趋向于无穷大,则必定所有的概率都0,不可能加起来和是1,所以里面一定有常返态

1 = l i m n → ∞ ∑ j P i j ( n ) = ∑ j l i m n → ∞ P i j ( n ) = ∑ j 0 = 0 Contradiction 1 = lim_{n \rightarrow \infty }\sum_j P_{ij}(n) = \sum_j lim_{n \rightarrow \infty} P_{ij}(n) = \sum_j 0 = 0 \\ \text{Contradiction} 1=limnjPij(n)=jlimnPij(n)=j0=0Contradiction

  这里求和和极限可以交换次序是因为只有有限的项,不需要条件。然后就从这里推导出了矛盾。所以能够证明,有限状态的马尔科夫链中一定有常返态。

1.3.4 不可约与常返性

  然后我们再下一个结论,如果一个马尔科夫链只有有限状态,并且马尔科夫链是不可约的,能够得到所有状态都是常返态。

Finite States + Irreducible ⇒ All states are Recurrent \text{Finite States} + \text{Irreducible} \Rightarrow \text{All states are Recurrent} Finite States+IrreducibleAll states are Recurrent

  因为,如果马尔科夫链具有有限状态,里面必然有常返态。而不可约意味着所有的状态都相通,因此能够证明所有的状态都是常返态。

  这样我们就能够把状态的性质转换为马尔科夫链的性质

State Property ⇒ Chain Property \text{State Property} \Rightarrow \text{Chain Property} State PropertyChain Property

1.3.5 非常反态的一个判据

  这里我们再给出一个常返态的性质,并且基于这个性质的证明可以给出一个非常返态的判据。

  结论:如果i可达j,并且i是常返的,则j也是常返的。

  这个结论说明,如果i是常返的,并且i能够到达j,说明两个状态就是相通的。常返态只去常返态。

i → j ⇒ j → i i \rightarrow j \Rightarrow j \rightarrow i ijji

  这里我们定义一个函数

g i i ( m ) = P ( # { k : Z k = i } ≥ m ∣ Z 0 = i ) g_{ii}(m) = P(\# \{k:Z_k=i \} \geq m |Z_0 = i) \\ gii(m)=P(#{k:Zk=i}mZ0=i)

  这个函数表示,从i出发,至少m次回到i的概率。右边式子表示,起始位置是i,然后是一个集合,对回到i的时刻进行记录形成的一个集合,这个集合元素数量至少是m。

  我们想找到这个集合的递推关系

g i i ( m ) → g i i ( m − 1 ) g_{ii}(m) \rightarrow g_{ii}(m-1) gii(m)gii(m1)

  可以用一步分析法。我们假设时间为k的时候第一次回到了i,那么对于gii来说,利用马尔科夫性,就是gii集合中要求至少m-1次回到i就行

g i i ( m ) = ∑ k = 1 ∞ f i i ( k ) g i i ( m − 1 ) = g i i ( m − 1 ) ∑ k = 1 ∞ f i i ( k ) g_{ii}(m) = \sum_{k=1}^{\infty} f_{ii}(k) g_{ii}(m-1) \\ = g_{ii}(m-1) \sum_{k=1}^{\infty} f_{ii}(k) gii(m)=k=1fii(k)gii(m1)=gii(m1)k=1fii(k)

Let  f i i = ∑ k = 1 ∞ f i i ( k ) g i i ( m ) = g i i ( m − 1 ) f i i ⇒ g i i ( m ) = ( f i i ) m ⇒ g i i = l i m m → ∞ g i i ( m ) \text{Let } f_{ii} = \sum_{k=1}^{\infty} f_{ii}(k) \\ g_{ii}(m) = g_{ii}(m-1) f_{ii} \Rightarrow g_{ii}(m) = (f_{ii})^m \\ \Rightarrow g_{ii} = lim_{m\rightarrow \infty}g_{ii}(m) Let fii=k=1fii(k)gii(m)=gii(m1)fiigii(m)=(fii)mgii=limmgii(m)

  这里可以用常返态的定义,如果i是常返的fii必定是1,否则就是个小于1的数字,m次乘方之后得到0

⇒ g i i = l i m m → ∞ g i i ( m ) = { 1 i Recurrent 0 i Non-Recurrent ( c ) \Rightarrow g_{ii} = lim_{m\rightarrow \infty}g_{ii}(m) = \begin{cases} 1 &\text{i Recurrent} \\ 0 &\text{i Non-Recurrent} \end{cases} \quad\quad (c) gii=limmgii(m)={10i Recurrenti Non-Recurrent(c)

  这里我们得到了对常返态的第三种形态[(a)(b)©]的认识。就是如果i是常返态,从i出发,无穷次回到i的概率是1,否则就是0。这个概率形式叫做零一率,因为概率只有0和1,没有中间状态。

  不过这种结论是个必要条件,i是常返态能够得到从i出发无穷次回到i的概率是1,但是不能证明这个概率是1,i一定是常返的。这种只具有必要性的结论是用来判反的,也就是用来判断i不是常返态的一种判据。

  然后我们基于这个非常返态的判据继续证明我们的结论。

  我们用转移概率的空间分解分解gii

g i i = ∑ k P i k ( m ) g k i g_{ii} = \sum_k P_{ik}(m)g_{ki} gii=kPik(m)gki

  也就是从i出发m步到达k,然后从k出发无穷多步到达i。由于所有从i出发的矩阵概率和加起来是1,因此可以做如下变换

1 = g i i = ∑ k P i k ( m ) g k i ⇒ ∑ k P i k ( m ) g k i − 1 = 0 ∑ k P i k ( m ) ( g k i − 1 ) = 0 1=g_{ii} = \sum_k P_{ik}(m)g_{ki} \\ \Rightarrow \sum_k P_{ik}(m)g_{ki} - 1 =0\\ \sum_k P_{ik}(m)(g_{ki} - 1) =0\\ 1=gii=kPik(m)gkikPik(m)gki1=0kPik(m)(gki1)=0

  由于转移概率一定是大于0的,而这个和又是0,必定有

g k i − 1 = 0 ⇒ g k i = 1 g_{ki} - 1 =0 \Rightarrow g_{ki} = 1 gki1=0gki=1

  也就是,如果i是常返的,如果i能够去k,则从k出发无穷多次到达i的概率是1,因此k也能去i。也就是二者相通了。

 gii(m)这个是结论是用来判断非常返的,是常返的必要条件,如果常返一定有这个性质,有这个性质不一定能够得到常返

2. 随机游动的常返性

  下面举一个经典的例子,就是随机游动的常返性

Random Walk \text{Random Walk} Random Walk

  我们知道,随机游动可以到任何一个状态去,根据1.3.1,如果两个状态相通,其中一个是常返的,另外一个也是常返的。

  因此,事实上,我们只要证明一个点的常返性即可。

在这里插入图片描述

2.1 一维随机游动

  我们先来看一维随机游动的常返性,我们就考虑零点即可。

  由于随机游动不是有限状态,不能通过有限状态马尔科夫链必定具有常返态的推论。我们只能从判据出发,判断转移概率的收敛性

  因此我们需要计算n步转移概率

∑ n = 0 ∞ P i i ( n ) \sum_{n=0}^{\infty} P_{ii}(n) n=0Pii(n)

  对于随机游动来说,n只能是偶数,因为奇数次游动必然不能保证回到原点,只有向左走和向右走的次数一样才能回来。因此n步转移概率可以表示为:奇数概率是0,偶数是2k步里面任意k步向左,任意k步向右即可。

P 00 ( n ) = { 0 n = 2 k − 1 ( 2 k k ) P k ( 1 − P ) k n = 2 k P_{00}(n) = \begin{cases} 0 & n=2k-1 \\ \\ \begin{pmatrix} 2k \\ k \end{pmatrix}P^k(1-P)^k & n =2k \end{cases} P00(n)=0(2kk)Pk(1P)kn=2k1n=2k

  我们分析这个通项公式是否是收敛的

∑ n = 0 ∞ P i i ( n ) = ∑ k = 0 ∞ ( 2 k k ) P k ( 1 − P ) k = ∑ n = 0 ∞ 2 k ! k ! k ! P k ( 1 − P ) k \sum_{n=0}^{\infty} P_{ii}(n) = \sum_{k=0}^{\infty} \begin{pmatrix} 2k \\ k \end{pmatrix}P^k(1-P)^k \\ =\sum_{n=0}^{\infty} \frac{2k!}{k!k!}P^k(1-P)^k n=0Pii(n)=k=0(2kk)Pk(1P)k=n=0k!k!2k!Pk(1P)k
  阶乘具有阶次近似的估计公式

Stirling n ! ∼ ( n e ) n 2 π n \text{Stirling} \\ n! \sim (\frac{n}{e})^n \sqrt{2\pi n} Stirlingn!(en)n2πn

  我们可以对阶乘进行简单的估计

n ! = e x p ( l n n ! ) = e x p ( ∑ k = 1 ∞ l n k ) ≈ e x p ( ∫ 1 n l n x d x ) = e x p ( n ( l n n − 1 ) ) = ( e x p ( l n n e ) ) n = ( n e ) n n! = exp(ln n!) = exp(\sum_{k=1}^{\infty} ln k) \\ \approx exp(\int_{1}^n ln x dx) = exp(n(lnn-1)) \\ = (exp(ln \frac{n}{e}))^n = (\frac{n}{e})^n n!=exp(lnn!)=exp(k=1lnk)exp(1nlnxdx)=exp(n(lnn1))=(exp(lnen))n=(en)n

  后面一项没有估计出来是积分的地方做的太粗糙了。

  我们用stirling式子得到的阶次近似估计代入计算

∑ n = 0 ∞ P i i ( n ) = ∑ n = 0 ∞ 2 k ! k ! k ! P k ( 1 − P ) k 2 k ! k ! k ! P k ( 1 − P ) k ∼ ( 2 k e ) 2 k 4 π k ( k e ) k 2 π k ( k e ) k 2 π k P k ( 1 − P ) k ∼ ( 4 P ( 1 − P ) ) k π k \sum_{n=0}^{\infty} P_{ii}(n) = \sum_{n=0}^{\infty} \frac{2k!}{k!k!}P^k(1-P)^k \\ \frac{2k!}{k!k!}P^k(1-P)^k \sim \frac{(\frac{2k}{e})^{2k} \sqrt{4 \pi k}}{(\frac{k}{e})^k \sqrt{2 \pi k}(\frac{k}{e})^k \sqrt{2 \pi k}} P^k (1-P)^k \sim \frac{(4P(1-P))^k}{\sqrt{\pi k}} n=0Pii(n)=n=0k!k!2k!Pk(1P)kk!k!2k!Pk(1P)k(ek)k2πk (ek)k2πk (e2k)2k4πk Pk(1P)kπk (4P(1P))k

  我们需要判断这个式子的收敛性

  我们先回忆一下级数的收敛性

1 k α ( i ) \frac{1}{k^\alpha} \quad\quad (i) kα1(i)

  (i)根据级数的收敛性,α小于等于1的时候是不收敛的,调和级数是不收敛的极限,只有α大于1的时候才会收敛。
1 k l n k ( i i ) \frac{1}{k{lnk}} \quad\quad (ii) klnk1(ii)

∑ k = 2 ∞ 1 k l n k ⇒ ∫ k = 2 ∞ 1 k l n k d k = ∫ k = 2 ∞ 1 l n k d l n k = l n l n k ∣ 2 ∞ = ∞ \sum_{k=2}^{\infty}\frac{1}{k{lnk}} \Rightarrow \int_{k=2}^{\infty} \frac{1}{k{lnk}} dk = \int_{k=2}^{\infty} \frac{1}{lnk} dlnk = ln lnk |_{2}^{\infty} = \infty k=2klnk1k=2klnk1dk=k=2lnk1dlnk=lnlnk2=

  (ii)可以转化为积分进行判断,肯定是发散的

  加一个平方就是收敛的

1 k l n 2 k ( i i i ) \frac{1}{k{ln^2k}} \quad\quad (iii) kln2k1(iii)

∑ k = 2 ∞ 1 k l n 2 k ⇒ ∫ 2 ∞ 1 k l n 2 k d k = ∫ 2 ∞ 1 l n 2 k d l n k = − 1 l n k ∣ 2 ∞ < ∞ \sum_{k=2}^{\infty}\frac{1}{k{ln^2k}} \Rightarrow \int_{2}^{\infty} \frac{1}{k{ln^2k}} dk \\ = \int_{2}^{\infty} \frac{1}{ln^2k} dlnk = - \frac{1}{ln k} |_{2}^{\infty} < \infty k=2kln2k12kln2k1dk=2ln2k1dlnk=lnk12<

  由于正项级数非负,并且单调递减,因此正项级数与积分具有相同的敛散性。由于积分收敛,因此级数也收敛。

  再回来分析随机游动的级数

( 4 P ( 1 − P ) ) k π k \frac{(4P(1-P))^k}{\sqrt{\pi k}} πk (4P(1P))k

  由于

0 ≤ 4 P ( 1 − P ) ≤ 1 0 \leq 4P(1-P) \leq 1 04P(1P)1

  当且仅当

P = 1 − P = 1 2 ⇒ 4 P ( 1 − P ) = 1 P = 1-P = \frac{1}{2} \Rightarrow 4P(1-P) = 1 P=1P=214P(1P)=1

  由此,当4P(P-1)=1的时候,得到的是一个P级数,由于P是小于1的,级数不收敛。而4P(P-1)< 1的时候,由于指数收敛性强于线性收敛项,所以级数是收敛的。

∑ ( 4 P ( 1 − P ) ) k π k = { = ∞ P = 1 2  Recurrent < ∞ P = 1 2  Non-Recurrent \sum \frac{(4P(1-P))^k}{\sqrt{\pi k}} = \begin{cases} = \infty & P = \frac{1}{2} \text{ Recurrent} \\ < \infty & P \cancel = \frac{1}{2} \text{ Non-Recurrent} \end{cases} πk (4P(1P))k={=<P=21 RecurrentP= 21 Non-Recurrent

  因此,对于一维随机游动问题,当随机游动向左和向右概率相同的时候,每个状态都是常返态。

2.2 二维随机游动

  再看二维的随机游动,我们就直接加上往各个方向概率相同。并且我们看零点的常返性
在这里插入图片描述

  我们假设运动了2n下,其中k下向左,k下向右,n-k向上,n-k向下

P 00 ( 2 n ) = ∑ k = 0 n ( 2 n k ) ( 2 n − k k ) ( 2 n − 2 k n − k ) ( 1 4 ) 2 n = ∑ k = 0 n 2 n ! k ! k ! ( n − k ) ! ( n − k ) ! ( 1 4 ) 2 n = ( 1 4 ) 2 n ( 2 n ) ! n ! n ! ∑ k = 0 n n ! n ! k ! k ! ( n − k ) ! ( n − k ) ! = ( 1 4 ) 2 n ( 2 n n ) ∑ k = 0 n ( n k ) 2 = ( 1 4 ) 2 n ( 2 n n ) ( 2 n n ) = ( 1 4 ) 2 n ( 2 n n ) 2 P_{00}(2n) =\sum_{k=0}^n \begin{pmatrix} 2n \\ k \end{pmatrix} \begin{pmatrix} 2n-k \\ k \end{pmatrix} \begin{pmatrix} 2n-2k \\ n-k \end{pmatrix}(\frac{1}{4})^{2n} \\ = \sum_{k=0}^n \frac{2n!}{k!k!(n-k)!(n-k)!}(\frac{1}{4})^{2n} \\ =(\frac{1}{4})^{2n}\frac{(2n)!}{n! n!} \sum_{k=0}^n \frac{n! n!}{k!k! (n-k)! (n-k)!} \\ = (\frac{1}{4})^{2n}\begin{pmatrix} 2n \\ n \end{pmatrix}\sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}^2 \\ = (\frac{1}{4})^{2n}\begin{pmatrix} 2n \\ n \end{pmatrix}\begin{pmatrix} 2n \\ n \end{pmatrix} \\ = (\frac{1}{4})^{2n}\begin{pmatrix} 2n \\ n \end{pmatrix}^2 P00(2n)=k=0n(2nk)(2nkk)(2n2knk)(41)2n=k=0nk!k!(nk)!(nk)!2n!(41)2n=(41)2nn!n!(2n)!k=0nk!k!(nk)!(nk)!n!n!=(41)2n(2nn)k=0n(nk)2=(41)2n(2nn)(2nn)=(41)2n(2nn)2

  这里说明一下

∑ k = 0 n ( n k ) 2 = ∑ k = 0 n ( n k ) ( n n − k ) \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}^2 \\ = \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} n \\ n-k \end{pmatrix} k=0n(nk)2=k=0n(nk)(nnk)

  这里可以说明一下,组合数本来可以看做是(1+x)n中xk的系数,组合数的平方可以变成互补形式的一个乘积。也就是下面两个式子

( 1 + x ) n → C n k x k [ 1 ] ( 1 + x ) n → C n n − k x n − k [ 2 ] (1+x)^n \rightarrow C_{n}^k x^k \quad\quad [1]\\ (1+x)^n \rightarrow C_{n}^{n-k} x^{n-k} \quad\quad [2] (1+x)nCnkxk[1](1+x)nCnnkxnk[2]

  而(1+x)2n中xn的系数就是C2nn

( 1 + x ) 2 n → C 2 n n x n [ 3 ] (1+x)^{2n} \rightarrow C_{2n}^n x^n \quad\quad [3] (1+x)2nC2nnxn[3]

( 1 + x ) 2 n = ( 1 + x ) n ( 1 + x ) n (1+x)^{2n} = (1+x)^n (1+x)^n (1+x)2n=(1+x)n(1+x)n

  我们可以发现,把[1][2]式子乘起来能够把xn-k和xk补成xn,而把所有这样的k加起来,得到的就是全部xn的系数,也就是C2nn

  因此,我们得到了

∑ k = 0 n ( n k ) 2 = ( 2 n n ) \sum_{k=0}^n \begin{pmatrix} n \\ k \end{pmatrix}^2 = \begin{pmatrix} 2n \\ n \end{pmatrix} k=0n(nk)2=(2nn)

  然后我们继续回去分析零点处的常返性

P 00 ( 2 n ) = ( 1 4 ) 2 n ( 2 n n ) 2 ∼ ( 1 4 ) 2 n ( 4 n n ) 2 ∼ 1 n P_{00}(2n) = (\frac{1}{4})^{2n}\begin{pmatrix} 2n \\ n \end{pmatrix}^2 \sim (\frac{1}{4})^{2n}(\frac{4^n}{\sqrt{n}})^2 \sim \frac{1}{n} P00(2n)=(41)2n(2nn)2(41)2n(n 4n)2n1

  刚好是个调和级数,不收敛。所以,仍然是每个状态都是常返态

∑ P 00 ( 2 n ) = ∞ Recurrent \sum P_{00}(2n) = \infty \quad \text{Recurrent} P00(2n)=Recurrent

2.3 多维随机游动

Dimension 1  n − 1 2 ⇒ Dimension 2  n − 2 2 ⇒ Dimension 3  n − 3 2 \text{Dimension 1 }\quad n^{-\frac{1}{2}} \\ \Rightarrow \text{Dimension 2 } \quad n^{-\frac{2}{2}} \\ \Rightarrow \text{Dimension 3 } \quad n^{-\frac{3}{2}} Dimension 1 n21Dimension 2 n22Dimension 3 n23

  我们可以总结一下之前计算得到的级数的阶次,与P级数有比较关系。由此可见,如果是三维以上的随机游动,P级数就收敛了。因此就不是常返的了。这是因为,维度一旦变大了,自由度就变大了,跑出去就回不来了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值