matplotlib可视化实战之二:matplotlib初识

matplotlib

1、测试

在python环境中,输入如下代码,如果不报错则表示安装成功

import matplotlib
import matplotlib.pyplot as plt

在这里插入图片描述

2、运行

在python中输入如下代码,测试生成的matplotlib图形

import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.ylabel('some numbers')
plt.show()

运行上述语句得到如下结果
在这里插入图片描述

3、pyplot库

matplotlib.pyplot是一个函数集合,可以像使用matlab似的进行图形绘制。pyplot中每个函数都会对画布图像做出相应的改变,比如创建画布、绘制绘图区、画线、添加文字说明等。
常用函数如下:

1.plt.figure()
创建一个全局绘图区域,包含如下参数

参数含义
num设置图像编号
figsize设置图像宽度高度
facecolor设置图像背景颜色
dpi设置图像分辨率
edgecolor设置图像边框颜色

在创建了绘图区域后,再使用函数plt.show()进行展示,如下代码

plt.figure(figsize=(6,4))
plt.show()

2.plt.subplot()
在全局绘图区域中创建自绘图区域,包含如下参数

参数含义
nrowssubplot行数
ncolssubplot列数

使用subplot划分子区域,如下代码

import matplotlib.pyplot as plt
plt.subplot(333)
plt.show()

上述语句将全局划分了3X3的区域,横向为3,纵向为3,并且在第三个位置(右上方)生成了坐标系,如下图
在这里插入图片描述

3.plt.axes()
创建一个坐标系风格的子绘图区域,默认创建subplot(111)坐标系,参数rect=[left,bottom,width,height]中4个变量的范围都是[0,1],表示全局坐标与全局绘图区的关系,axisbg表示背景色,默认为白色“white”,代码如下

import matplotlib.pyplot as plt
plt.axes([0.1,0.1,0.7,0.3],axisbg='y')
plt.show()

4.plt.subplots_adjust()
用于调整子绘图区域的布局

4、pyplot相关函数

plt子库提供了7个用于读取和显示的函数,17个用于绘制基础图表的函数,3个区域填充函数,9个坐标轴设置函数,11个标签与文本设置函数,如下表

读取和显示函数

函数名称函数作用
plt.legend()绘图区放置绘图标签
plt.show()显示绘制的图像
plt.matshow()窗口显示数组矩阵
plt.imshow()axes上显示图像
plt.imsave()保存数组为图像文件
plt.savefig()设置图像保存格式
plt.imread()从图像文件中读取数组

图表函数

函数名称函数作用
plt.plot根据数组绘制直线和曲线
plt.boxplot绘制箱型图
plt.bar绘制条形图
plt.barh绘制横向条形图
plt.polar绘制极坐标图
plt.pie绘制饼图
plt.psd绘制功率谱密度图

区域填充函数

函数名称函数作用
fill填充多边形
fill_between填充曲线围成的多边形
fill_betweenx填充水平线之间的区域

坐标轴设置函数

函数名称函数作用
plt.axis获取设置轴属性的快捷方式
plt.xlim设置x轴取值范围
plt.ylim设置y轴取值范围
plt.xscale设置x轴缩放
plt.yscale设置y轴缩放
plt.autoscale自动缩放轴视图
plt.text添加注释
plt.thetagrids设置极坐标网格
plt.grid打开或关闭极坐标

标签与文本设置函数

函数名称函数作用
plt.figlegend全局绘图放置图注
plt.xlabel设置x轴名字
plt.ylabel设置y轴名字
plt.xticks设置x轴刻度位置和数值
plt.yticks设置y轴刻度位置和数值
plt.clabel设置等高线
plt.get_figlabels返回标签列表
plt.figtext添加文本信息
plt.title设置标题
plt.suptitle设置总图标题
plt.annotate添加注释

5、numpy和matplotlib绘图综合应用

执行如下代码

import matplotlib.pyplot as plt
import numpy as np
x=np.arange(10)
y=np.sin(x)
z=np.cos(x)
plt.plot(x,y,marker="*",linewidth=3,linestyle="--",color="red")
plt.plot(x,z)
plt.title("matplotlib")
plt.xlabel("x")
plt.ylabel("y")
plt.legend(["Y","Z"],loc="upper right")
plt.grid(True)
plt.show()

运行上述代码得到如下结果
在这里插入图片描述
示例使用numpy库存储数组,使用matplotlib绘制输出到屏幕上,显示两条颜色不同的折线y和z,分别代表正弦函数和余弦函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值