一个简单的pytorch模型

本文介绍了如何在PyTorch中创建全连接层和定义ResNet神经网络。通过实例展示了如何将数据传递给模型并获取预测输出。详细解析了nn.Module的__call__和forward方法,以及Resnet类的构造和前向传播过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、创建一个全连接层

model = torch.nn.Linear(1, 1)

2、传入数据,model作为可调用对象被当做函数调用,并输出返回值y_predict

y_predict = model(x_data)

3、源码

class Module(object):
	# 当子类被当做可调用对象调用时,会调用其重写的forward方法
	def __call__(self, *input, **kwargs):
		result = self.forward(*input, **kwargs)

class Linear(Module):
	# 构造函数时,初始化参数权重矩阵w和偏置b
	def __init__(self, in_features, out_features, bias
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泤燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值