数值分析(1):数学模型和数值方法引论

1. 数值计算的误差

1.1 误差来源与分类

输入数据的误差,舍入误差,截断误差,误差在计算过程中的传播

1.2 误差和有效数字

  1. x x x为精确值, x A x_A xA是它的一个近似值
    绝对误差: x − x A x-x_A xxA
    相对误差: ( x − x A ) / x A (x-x_A)/x_A (xxA)/xA
    绝对误差界(误差界): ∣ x − x A ∣ ⩽ ε A \left| x-x_A \right|\leqslant \varepsilon _A xxAεA ε A \varepsilon _A εA是绝对误差界
    相对误差界: ε A ∣ x A ∣ \frac{\varepsilon _A}{|x_A|} xAεA

  2. 通过绝对误差界寻找有效数字
    ε A \varepsilon _A εA最小是 0.5 × 1 0 − n 0.5 \times 10^{-n} 0.5×10n?找到最大的n后,此数就精确到小数点后第n位,有效数字从第一个非零数字开始,数到小数点后第n位。

  3. 也可以通过相对误差界寻找有效数字,本质上还是转换为绝对误差界

1.3 求函数值和算术运算的误差估计

  1. 假设一个函数记为 f ( x ) f(x) f(x),那么其真值记为 f ( x ) f(x) f(x),估计值记为 f ( x A ) f(x_A) f(xA),函数值的绝对误差和自变量的绝对误差满足(在数学理论上,不严格,但是在数值分析中,可以这么处理): ∣ f ( x ) − f ( x A ) ∣ ≤ ∣ f ′ ( x A ) ∣ ∣ x − x A ∣ |f(x)-f(x_A)| \leq |f'(x_A)| |x-x_A| f(x)f(xA)f(xA)xxA

  2. 多元函数误差估计: ∣ f ( x , y , z ) − f ( x A , y A , z A ) ∣ ≤ ∣ ∂ f ∂ x ∣ x A , y A , z A ∣ ∣ x − x A ∣ + ∣ ∂ f ∂ y ∣ x A , y A , z A ∣ ∣ y − y A ∣ + ∣ ∂ f ∂ z ∣ x A , y A , z A ∣ ∣ z − z A ∣ | f(x,y,z)-f(x_A,y_A,z_A) | \leq \left|\frac{\partial f}{\partial x}\mid_{x_A,y_A,z_A} \right|^{} | x-x_A | + \left|\frac{\partial f}{\partial y}\mid_{x_A,y_A,z_A} \right|^{} | y-y_A | + \left|\frac{\partial f}{\partial z}\mid_{x_A,y_A,z_A} \right|^{} | z-z_A | f(x,y,z)f(xA,yA,zA)xfxA,yA,zAxxA+yfxA,yA,zAyyA+zfxA,yA,zAzzA

2. 病态问题,数值稳定性,避免误差危害

  1. 如果函数值的相对误差除以自变量的相对误差,得到的结果非常大,那么这就是一个病态问题
  2. 如果初始数据的微小改变会引起最后结果的巨大改变,那么就称作是数值不稳定的,反之则称为数值稳定的
  3. 如何避免计算过程中的舍入误差?
  • 避免有效数字的损失。手段:分子有理化;改变计算次序,防止大数吃小数
  • 减少运算次数。手段:秦九韶算法;两数相减再进行级数展开。

3. 线性代数的基本知识

3.1 特征值、相似变换

若存在复数 λ \lambda λ和非零向量 x x x,使得: A x = λ x Ax=\lambda x Ax=λx 那么称 λ \lambda λ为矩阵 A A A的特征值, x x x称为矩阵 A A A属于特征值 λ \lambda λ的特征向量.

求解特征值的方法:令特征多项式的值为0,即:
d e t ( λ I − A ) = 0 det(\lambda I-A)=0 det(λIA)=0

  1. A A A的全体特征值的集合称为 A A A的谱
  2. 按模最大特征值称为谱半径,即 ρ ( A ) = m a x 1 ≤ i ≤ n ∣ λ i ∣ \rho(A)=max_{1 \leq i \leq n}|\lambda_i| ρ(A)=max1inλi
  3. 特征值之和称为矩阵的迹
  4. 特征值之积为矩阵的行列式
  5. 如果两个矩阵相似,那么他们有相同的特征多项式和相同的谱
  6. 如果 A A A与对角矩阵相似,那么称 A A A可对角化

3.2 线性空间和内积空间

  1. 一个空间是线性空间需要满足八条性质,四条关于加法,四条关于数乘:

在这里插入图片描述

  1. 一个线性空间如果满足以下四条性质,则定义了内积
    在这里插入图片描述

3.3 范数、赋范线性空间

范数是定义成一个线性空间到一个数的映射。这个映射存在三个性质:正定性、齐次性、三角不等式。
在这里插入图片描述
等价范数:
在这里插入图片描述
则称 ∣ ∣ . ∣ ∣ α ||.||_{\alpha} .α ∣ ∣ . ∣ ∣ β ||.||_{\beta} .β是V上等价的范数。

可以证明,在一个有限维线性空间上定义的各种范数都是相互等价的。

3.4 向量范数和矩阵范数

矩阵范数的定义:
在这里插入图片描述
矩阵范数和向量范数的相容性:

在这里插入图片描述

由任意一种向量范数,可以导出对应的一种矩阵范数
在这里插入图片描述
在这里插入图片描述
从属于向量1-范数的矩阵范数为矩阵的1-范数,记为 ∣ ∣ A ∣ ∣ 1 ||A||_1 A1.同理,有 ∣ ∣ A ∣ ∣ 2 ||A||_2 A2 ∣ ∣ A ∣ ∣ ∞ ||A||_{\infin} A.这是3种常见的矩阵从属范数.

  • ∣ ∣ A ∣ ∣ ∞ ||A||_{\infin} A又被称为行范数,其值为各行所有元素的绝对值之和的最大值。数学表达式为:
    在这里插入图片描述
  • ∣ ∣ A ∣ ∣ 1 ||A||_{1} A1又被称为列范数,其值为各列所有元素的绝对值之和的最大值。数学表达式为:
    在这里插入图片描述
  • ∣ ∣ A ∣ ∣ 2 ||A||_{2} A2又被称为谱范数,其值为 A T A A^TA ATA的谱半径开根号(谱半径是矩阵的模最大的特征值)。数学表达式为:
    在这里插入图片描述

矩阵A的谱半径与A的从属范数有如下关系:

在这里插入图片描述

3.5 特殊矩阵

  1. 单位矩阵,对角阵,上(下)三角阵,对称阵。对称阵有一个性质:其矩阵二范数等于谱半径,即 ∣ ∣ A ∣ ∣ 2 = ρ ( A ) ||A||_2=\rho(A) A2=ρ(A)
  2. 严格对角优势阵:即对角线上元素的绝对值比同一行其他所有元素绝对值之和还要大。性质:它必定满秩。
    在这里插入图片描述

4. 补充知识点

4.1 关于谱半径

一个矩阵的谱半径定义为该矩阵的模最大的特征值,因此特征值的性质和谱半径的性质密切相关,有如下关系:

  1. 若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。因此如果矩阵 A A A对称矩阵,有:
    ρ ( A T A ) = ρ ( A 2 ) = ( ρ ( A ) ) 2 \rho(A^TA)=\rho(A^2)=(\rho(A))^2 ρ(ATA)=ρ(A2)=(ρ(A))2
    进一步地可知,对称矩阵的二范数等于其谱半径,即:
    ∣ ∣ A ∣ ∣ 2 = ρ ( A ) ||A||_2=\rho(A) A2=ρ(A)

  2. 若λ是可逆阵B的一个特征根,x为对应的特征向量,则1/λ 是B的逆的一个特征根,x仍为对应的特征向量。
    那么: ρ ( B − 1 ) = ( ρ ( B ) ) − 1 \rho(B^{-1})=(\rho(B))^{-1} ρ(B1)=(ρ(B))1
    进一步地可知,对称矩阵 A A A的逆的二范数等于其谱半径,即:
    ∣ ∣ A − 1 ∣ ∣ 2 = ρ ( A − 1 ) = ( ρ ( A ) ) − 1 ||A^{-1}||_2=\rho(A^{-1})=(\rho(A))^{-1} A12=ρ(A1)=(ρ(A))1

  3. 如果矩阵U是正交矩阵,那么:
    ρ ( U ) = 1 \rho(U)=1 ρ(U)=1
    且:
    ∣ ∣ U ∣ ∣ 2 = 1 ||U||_2=1 U2=1

参考文献:
关治,陆金甫《数值方法》

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值