强化学习之图解PPO算法和TD3算法

13 篇文章 0 订阅 ¥99.90 ¥299.90

0. 引言

关于on-policy和off-policy的定义,网上有很多不同的讨论,我认为,on-policy和off-policy的差异在于训练目标策略 所用到的数据 ( s , a , r , s ′ ) (s,a,r,s')

PPO(Proximal Policy Optimization)是一种在强化学习领域中使用的策略优化方法,它旨在解决策略梯度方法中的稳定性问题。PPO通过限制策略更新的步长来避免性能的大幅波动,同时保持学习的效率。在机器人运动控制中,PPO算法的执行细节流程可以大致分为以下几个步骤: 1. 初始化:设置环境、机器人模型、PPO算法参数(如学习率、折扣因子、GAE参数等)。 2. 收集数据:机器人在当前策略下与环境交互,收集状态(S)、动作(A)、奖励(R)以及新的状态(S')。 3. 计算优势函数:利用收集到的数据计算优势函数A(s,a),用于评估动作的相对好坏。 4. 损失函数计算:构建损失函数,通常是最大化奖励的期望与策略熵的和,同时限制策略更新的步长。 5. 优化策略:使用优化算法(如Adam或SGD)更新策略网络参数,以最小化损失函数。 6. 策略评估:评估策略更新后的性能,通常通过计算平均奖励等指标。 7. 检查停止条件:如果达到预定的迭代次数或性能指标,则停止训练。 8. 部署模型:将训练好的策略部署到实际的机器人中进行运动控制。 下面是PPO算法在机器人运动控制中执行细节的简化流程图: ``` +----------------+ +-------------------+ +-------------------+ | 初始化策略和环境 | --> | 收集数据(S, A, R, S') | -------+ | 构建损失函数 | +---------------------+ | v +---------------------+ | 使用优化算法更新策略 | +---------------------+ | v +--+ | v +---------------------+ | 检查是否满足停止条件 | +---------------------+ | v +---------------------+ | 部署策略至机器人 | +---------------------+ ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值