强化学习之图解SAC算法

柔性动作-评价(Soft Actor-Critic,SAC)算法的网络结构有5个。SAC算法解决的问题是离散动作空间和连续动作空间的强化学习问题,是off-policy的强化学习算法(关于on-policy和off-policy的讨论可见:强化学习之图解PPO算法和TD3算法)。

SAC的论文有两篇,一篇是《Soft Actor-Critic Algorithms and Applications》,2019年1月发表,其中SAC算法流程如下所示,它包括1个actor网络,4个Q Critic网络:

在这里插入图片描述

一篇是《Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Lear

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值