从交叉熵角度理解困惑度(perplexity)

从交叉熵理解困惑度

我们通常使用困惑度(perplexity)来评价语言模型的好坏。通过理解困惑度,也可以让我们更加深入的理解交叉熵(CrossEntropy)的意义,也可以轻易量化模型的性能。

回顾交叉熵以及多分类问题的损失函数。假设现有 N N N 个数据样本,其中样本的标签为 Y i ( i = 1 , 2 , ⋯   , N ) Y_i(i=1,2,\cdots,N) Yi(i=1,2,,N),而模型对样本的预测值记为 Y i ^ ( i = 1 , 2 , ⋯   , N ) \widehat{Y_i}(i=1,2,\cdots,N) Yi (i=1,2,,N),则我们可以计算交叉熵损失:
C r o s s E n t r o p y ( Y , Y ^ ) = − ∑ i = 1 N Y i l o g ( Y ^ i ) CrossEntropy(Y,\widehat{Y})=-\sum_{i=1}^NY_{i}log(\widehat{Y}_i) CrossEntropy(Y,Y )=i=1NYilog(Y i)

这个公式并不那么直观,我们再从一个更加具体的例子来体会一下交叉熵损失的计算过程。

在多分类问题中, Y i Y_i Yi​ 表示的是一个独热编码(0-1类别)的向量,比如对于三分类的某一个样本标签为: Y = [ 0 ( y 1 ) 0 ( y 2 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值