无/有扰动超螺旋滑模观测器的有限时间收敛证明


前言`

本文将就超螺旋观测器的有限时间收敛性进行证明。读者可以认为是2012年文献[1]的英文翻译成中文,如果想看更原汁原味的文章可以直接看原文。

STA可以用以下公式进行描述:
x ˙ 1 = − k 1 ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) + x 2 + ρ 1 ( x , t ) x ˙ 2 = − k 2 s i g n ( x 1 ) + ρ 2 ( x , t ) \begin{equation} \begin{aligned} \dot x_1 &= -k_1 |x_1|^{1/2}\mathrm{sign}(x_1) + x_2 + \rho_1(x,t) \\ \dot x_2 &= -k_2\mathrm{sign}(x_1) + \rho_2(x,t) \end{aligned} \end{equation} x˙1x˙2=k1x11/2sign(x1)+x2+ρ1(x,t)=k2sign(x1)+ρ2(x,t)
其中, x i x_i xi是状态变量, k i k_i ki是要被设计的增益, ρ i \rho_i ρi是干扰项。

一、无扰动下的超螺旋滑模观测器

先考虑 ρ 1 ( x , t ) = 0 \rho_1(x,t)=0 ρ1(x,t)=0 ρ 2 ( x , t ) = 0 \rho_2(x,t)=0 ρ2(x,t)=0的情况,于是系统可以简化成以下形式。
x ˙ 1 = − k 1 ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) + x 2 x ˙ 2 = − k 2 s i g n ( x 1 ) \begin{equation} \begin{aligned} \dot x_1 &= -k_1 |x_1|^{1/2}\mathrm{sign}(x_1) + x_2 \\ \dot x_2 &= -k_2\mathrm{sign}(x_1) \end{aligned} \end{equation} x˙1x˙2=k1x11/2sign(x1)+x2=k2sign(x1)

变量变形

假设新的变量为 z T = [ z 1 , z 2 ] = [ ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) , x 2 ] z^\mathrm T=[z_1, z_2]=\left[ |x_1|^{1/2}\mathrm{sign}(x_1),x_2\right ] zT=[z1,z2]=[x11/2sign(x1),x2],于是
z ˙ = 1 ∣ z 1 ∣ A z , A = [ − 1 2 k 1 1 2 − k 2 0 ] \dot z=\frac{1}{|z_1|}Az,A=\begin{bmatrix} -\frac{1}{2}k_1 & \frac{1}{2} \\ -k_2 & 0 \\ \end{bmatrix} z˙=z11AzA=[21k1k2210]
其中, ∣ z 1 ∣ = ∣ x 1 ∣ 1 / 2 |z_1|=|x_1|^{1/2} z1=x11/2,考虑李雅普诺夫函数
V ( x ) = z T P z V(x)=z^TPz V(x)=zTPz
其中, P P P是一个常数、对称、正定的矩阵。对其求导得
V ˙ = − ∣ x 1 ∣ − 1 / 2 z T Q z \begin{equation} \dot V=-|x_1|^{-1/2}z^TQz \end{equation} V˙=x11/2zTQz
其中, P P P Q Q Q满足代数李亚普诺夫Algebraic Lyapunov Equation (ALE)方程
A T P + P A = − Q A^TP+PA=-Q ATP+PA=Q
k 1 > 0 , k 2 > 0 k_1>0,k_2>0 k1>0,k2>0时, A A A是Hurwitz矩阵(所有特征值为负),则对于任意的矩阵 Q = Q T > 0 Q=Q^T>0 Q=QT>0,存在唯一矩阵 P = P T > 0 P=P^T>0 P=PT>0使其满足上式。接下来给出定理1。

定理

定理1.考虑无干扰的STO,具有固定增益 k 1 k_1 k1, k 2 k_2 k2,具有以下性质:
1.原点 x = 0 x=0 x=0是有限时间稳定的。
2.矩阵 A A A是Hurwitz矩阵,其所有特征值具有负实部。
3.增益 k 1 > 0 , k 2 > 0 k_1>0,k_2>0 k1>0,k2>0
4.对于任意的矩阵 Q = Q T > 0 Q=Q^T>0 Q=QT>0,存在唯一矩阵 P = P T > 0 P=P^T>0 P=PT>0满足ALE方程。

证明

定理中2、3、4的证明可以从线性时不变系统的李雅普诺夫稳定性中得到。因此主要证明定理中的性质1。 V ( x ) = z T P z = p 11 ∣ x 1 ∣ + 2 p 12 x 2 ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) + p 22 x 2 2 V(x)=z^TPz=p_{11}|x_1|+2p_{12}x_2|x_1|^{1/2}\mathrm{sign}(x_1)+p_{22}x_2^2 V(x)=zTPz=p11x1+2p12x2x11/2sign(x1)+p22x22,其中 p i j p_{ij} pij是矩阵 P P P的分量。于是 V V V是关于 x x x的完全连续(Absolute Continuous,AC)函数,它是正定的且径向无界的。可以得到
λ m i n ( P ) ∣ ∣ z ∣ ∣ 2 ≤ V ( x ) ≤ λ m a x ( P ) ∣ ∣ z ∣ ∣ 2 \begin{equation} \lambda_{min}(P)||z||^2\leq V(x)\leq \lambda_{max}(P)||z||^2 \end{equation} λmin(P)∣∣z2V(x)λmax(P)∣∣z2
其中, ∣ ∣ z ∣ ∣ 2 = ∣ x 1 ∣ + x 2 2 ||z||^2=|x_1|+x_2^2 ∣∣z2=x1+x22 λ ( P ) \lambda(P) λ(P)为矩阵 P P P的特性值。为了保证收敛到0,有必要证明沿着系统(2)的轨迹 ϕ ( t , x 0 ) \phi(t,x_0) ϕ(t,x0), V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))会单调减少。当李雅普诺夫函数连续可微,或者至少是局部Lipschitz连续,通常借助李雅普诺夫定理。然而, V ( x ) V(x) V(x) x 1 = 0 x_1=0 x1=0处,其中的 ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) |x_1|^{1/2}\mathrm{sign}(x_1) x11/2sign(x1)项导致了其不满足前面的两个条件。
说明:Lipschitz连续即存在L使得 ∣ f ( x ) − f ( y ) ∣ ≤ L ∣ x − y ∣ |f(x)-f(y)|\leq L|x-y| f(x)f(y)Lxy。显然 ∣ ∣ x ∣ 1 / 2 s i g n ( x ) − 0 ∣ / ∣ x ∣ = x − 1 / 2 ≤ L \left||x|^{1/2}\mathrm{sign}(x)-0\right|/|x|=x^{-1/2}\leq L x1/2sign(x)0 /∣x=x1/2L,当 x x x趋于0时,这样的 L L L显然不存在。

于是,可以通过Zubov的理论[2,Theorem 20.2,p. 568.],这个理论只需要李雅普诺夫函数的连续性来证明收敛性。
如果我们可以证明 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))时间的AC函数,则当且仅当 V ˙ \dot V V˙几乎处处负定 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))是单调递减函数[3,p.207]。注意到 V ( ϕ ( t , x 0 ) ) = V ∘ ϕ ( t , x 0 ) V(\phi(t, x_0)) = V \circ \phi(t, x_0) V(ϕ(t,x0))=Vϕ(t,x0) 是函数 V ( x ) V(x) V(x) ϕ ( t , x 0 ) \phi(t, x_0) ϕ(t,x0) 的组合,其中 V ( x ) V(x) V(x) 是关于 x x x 的 AC 函数,而 ϕ ( t , x 0 ) \phi(t, x_0) ϕ(t,x0) 根据微分方程(1)包含的解的定义是关于时间的 AC 函数。然而两个AC函数的组合通常不是一个AC函数[4,p. 391]。两个AC函数的加发和乘法总是一个AC函数,但是两个(标量)AC函数 h ∘ g h\circ g hg可以是AC函数,如果它们满足 h h h是利普西茨或者 g g g是单调的[4,p. 391]。在
V ( ϕ ( t , x 0 ) ) = p 11 ∣ ϕ 1 ( t , x 0 ) ∣ + 2 p 12 ϕ 2 ( t , x 0 ) ∣ ϕ 1 ( t , x 0 ) ∣ 1 / 2 s i g n ( ϕ 1 ( t , x 0 ) ) + p 22 x 2 2 V(\phi(t,x_0))=p_{11}|\phi_1(t,x_0)|+2p_{12}\phi_2(t,x_0)|\phi_1(t,x_0)|^{1/2}\mathrm{sign}(\phi_1(t,x_0))+p_{22}x_2^2 V(ϕ(t,x0))=p11ϕ1(t,x0)+2p12ϕ2(t,x0)ϕ1(t,x0)1/2sign(ϕ1(t,x0))+p22x22
中,确定 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))是AC函数的问题项是这一项, ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) ∘ ϕ 1 ( t , x 0 ) = ϕ 1 ( t , x 0 ) ∣ 1 / 2 s i g n ( ϕ 1 ( t , x 0 ) ) |x_1|^{1/2}\mathrm{sign}(x_1)\circ \phi_1(t,x_0)=\phi_1(t,x_0)|^{1/2}\mathrm{sign}(\phi_1(t,x_0)) x11/2sign(x1)ϕ1(t,x0)=ϕ1(t,x0)1/2sign(ϕ1(t,x0)),并且 ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) |x_1|^{1/2}\mathrm{sign}(x_1) x11/2sign(x1) x 1 = 0 x_1=0 x1=0处是非利普西茨的。接下来,我们将说明当 ϕ 1 ( t , x 0 ) \phi_1(t,x_0) ϕ1(t,x0)经过 ϕ 1 ( t , x 0 ) = 0 \phi_1(t,x_0)=0 ϕ1(t,x0)=0,它是单调的,这也就证明了 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0)) t t t的AC函数,因此它的导数几乎处处都有定义。

为了证明 ϕ 1 ( t , x 0 ) \phi_1(t,x_0) ϕ1(t,x0)经过0的时候是单调的,假设在 t = τ t=\tau t=τ时刻, ϕ 1 ( τ , x 0 ) = 0 \phi_1(\tau,x_0)=0 ϕ1(τ,x0)=0, ϕ 2 ( t , x 0 ) ≠ 0 \phi_2(t,x_0)\neq0 ϕ2(t,x0)=0。从微分方程可以得到 x ˙ 1 ∈ − k 1 ∣ x 1 ∣ 1 / 2 s i g n ( x 1 ) + x 2 \dot x_1\in-k_1|x_1|^{1/2}\mathrm{sign}(x_1)+x_2 x˙1k1x11/2sign(x1)+x2。则 ϕ 1 ( t , x 0 ) \phi_1(t,x_0) ϕ1(t,x0)在包含 τ \tau τ的某个区间内单调递增或者递减。如果在 t = τ t=\tau t=τ时刻, ϕ 1 ( τ , x 0 ) = 0 \phi_1(\tau,x_0)=0 ϕ1(τ,x0)=0, ϕ 2 ( t , x 0 ) = 0 \phi_2(t,x_0)=0 ϕ2(t,x0)=0 ϕ 1 ( τ , x 0 ) \phi_1(\tau,x_0) ϕ1(τ,x0)将已知保持在0处。在上述两种情况下 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))均是AC函数。

由于 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))并且 V ˙ \dot V V˙(3)几乎处处不可微(n.d),它遵循 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))是单调递减函数[3,p.207]。
此处为原文原话:Since V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0)) is AC and V ˙ \dot V V˙(3) is n.d. almost everywhere, it follows that V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0)) is a monotonically decreasing function [3, p. 207].

此外,从(4)式可知 ∣ x 1 ∣ 1 / 2 ≤ ∣ ∣ z ∣ ∣ ≤ λ m i n − 1 / 2 ( P ) V 1 / 2 |x_1|^{1/2}\leq ||z||\leq \lambda_{min}^{-1/2}(P)V^{1/2} x11/2∣∣z∣∣λmin1/2(P)V1/2,于是 ∣ x 1 ∣ − 1 / 2 ≥ λ m i n 1 / 2 ( P ) V − 1 / 2 |x_1|^{-1/2}\ge \lambda_{min}^{1/2}(P)V^{-1/2} x11/2λmin1/2(P)V1/2。同理可以得到 z T Q z ≥ λ m i n ( Q ) ∣ ∣ z ∣ 2 ≥ λ m i n ( Q ) λ m a x − 1 ( P ) V z^TQz\ge \lambda_{min}(Q)||z|^2\ge \lambda_{min}(Q)\lambda_{max}^{-1}(P)V zTQzλmin(Q)∣∣z2λmin(Q)λmax1(P)V,于是可以得到:
V ˙ = − ∣ x 1 ∣ − 1 / 2 z T Q z ≤ − σ V 1 / 2 \begin{equation} \dot V=-|x_1|^{-1/2}z^TQz\leq -\sigma V^{1/2} \end{equation} V˙=x11/2zTQzσV1/2
其中 , σ = λ m i n 1 / 2 ( P ) λ m i n ( Q ) λ m a x ( P ) \sigma=\frac{\lambda_{min}^{1/2}(P)\lambda_{min}(Q)}{\lambda_{max}(P)} σ=λmax(P)λmin1/2(P)λmin(Q)。因为AC函数是它导数的积分,可以得到:
V ( ϕ ( t , x 0 ) ) − V ( ϕ ( 0 , x 0 ) ) = ∫ 0 t V ˙ ( ϕ ( τ , x 0 ) ) d τ ≤ − σ ∫ 0 t V 1 / 2 ( ϕ ( τ , x 0 ) ) d τ V(\phi(t,x_0))-V(\phi(0,x_0))= \int_0^t\dot V(\phi(\tau,x_0))d\tau\\ \leq-\sigma\int_0^t V^{1/2}(\phi(\tau,x_0))d\tau V(ϕ(t,x0))V(ϕ(0,x0))=0tV˙(ϕ(τ,x0))dτσ0tV1/2(ϕ(τ,x0))dτ
根据Bihari不等式[2, p.509]可以推出 V ( ϕ ( t , x 0 ) ) ≤ ( V 1 / 2 ( x 0 ) − ( σ / 2 ) t ) 2 V(\phi(t,x_0))\leq (V^{1/2}(x_0)-(\sigma/2)t)^2 V(ϕ(t,x0))(V1/2(x0)(σ/2)t)2,所以将在 T ( x 0 ) = 2 σ V 1 / 2 ( x 0 ) T_(x_0)=\frac{2}{\sigma}V^{1/2}(x_0) Tx0=σ2V1/2(x0)内收敛到0。

有关这里,可以使用换元法直接分析证明。针对(5)式进行变形。令 y = V 1 / 2 > 0 y=V^{1/2}>0 y=V1/2>0,则可以得到 y ˙ = 1 2 V ˙ V − 1 / 2 \dot y=\frac 1 2\dot V V^{-1/2} y˙=21V˙V1/2,于是 V ˙ = 2 y y ˙ \dot V=2y\dot y V˙=2yy˙,带入(5)得, 2 y y ˙ ≤ − σ y 2y\dot y\leq -\sigma y 2yy˙σy,于是 y ˙ ≤ − σ 2 \dot y\leq -\frac \sigma 2 y˙2σ,于是 y ≤ y ( 0 ) − σ 2 t y\leq y(0)-\frac \sigma 2 t yy(0)2σt,于是 V ≤ ( V ( 0 ) − σ 2 t ) 2 V\leq (V(0)-\frac \sigma 2 t)^2 V(V(0)2σt)2

接下来,为了更深刻地说明定理1的性质1和性质2是等价的,我们假设矩阵A不是赫尔维兹(Hurwitz)矩阵,我们将证明 x = 0 x=0 x=0对系统(2)来说不是渐近稳定的。接下来将讨论一下几种情况。假设矩阵A的特征值为 λ 1 , 2 = k 1 / 4 ± k 1 2 / 16 − k 2 / 2 \lambda_{1,2}=k_1/4\pm\sqrt{k_1^2/16-k_2/2} λ1,2=k1/4±k12/16k2/2
(1) λ 1 , 2 \lambda_{1,2} λ1,2是虚数, k 1 = 0 , k 2 > 0 k_1=0,k_2>0 k1=0,k2>0。于是,对于ALE方程 Q = 0 Q=0 Q=0, P = diag { k 2 , 1 } P=\text{diag}\{k_2,1\} P=diag{k2,1}。所以 V ( x ) V(x) V(x)是局部利普西茨,以及正定(p.d.)的。并且 V ˙ = 0 \dot V=0 V˙=0,即 V ( x ) V(x) V(x)为常数且无法收敛到0。
(2) λ 1 , 2 = 0 \lambda_{1,2}=0 λ1,2=0, k 1 = 0 , k 2 = 0 k_1=0,k_2=0 k1=0,k2=0,在这种情况下系统(2)是线性的,显然关于原点是不稳定的。
(3) λ 1 , 2 \lambda_{1,2} λ1,2是不同符号的实数, k 1 2 ≥ 8 k 2 , k 2 < 0 k_1^2\ge 8k_2,k_2<0 k128k2,k2<0,于是可以得到
P c = [ − k 1 1 1 0 ] , Q c = [ 2 k 2 − k 1 2 k 1 k 1 − 1 ] < 0 P_c=\left[\begin{array}{ll}-k_1 & 1 \\ 1 & 0\end{array}\right], Q_c=\left[\begin{array}{ll}2 k_2-k_1^2 & k_1 \\ k_1 & -1\end{array}\right]<0 Pc=[k1110],Qc=[2k2k12k1k11]<0是ALE方程的解。 Chetaev的不稳定关系推广将在这里用来证明[5, Theorem 4.3]。对于函数 V c ( x ) = z T P c z V_c(x)=z^TP_cz Vc(x)=zTPcz,在集合 U = { z ∈ R 2 ∣ z 1 ( 2 z 2 − k 1 z 1 ) > 0 } U=\left\{z \in \mathbb{R}^2 \mid z_1\left(2 z_2-k_1 z_1\right)>0\right\} U={zR2z1(2z2k1z1)>0}中是正定的。 U U U包含了原点附近的任意点,并且在 V c ( x ) = 0 V_c(x)=0 Vc(x)=0处有边界 { z 1 = 0 } \{z_1=0\} {z1=0} { 2 z 2 = k 1 z 1 } \{2 z_2=k_1 z_1\} {2z2=k1z1}
对于任意的初始点 x 0 ∈ U ∩ B r x_0 \in U\cap B_r x0UBr, B r = { z ∈ R 2 ∣ ∣ z ∣ ∣ ∣ ≤ r B_r=\{z\in \mathbb{R}^2 ||z||\mid \leq r Br={zR2∣∣z∣∣∣≤r V c ( x 0 ) > 0 V_c(x_0)>0 Vc(x0)>0,既然 V ˙ c ( x ) = − ∣ x 1 ∣ − 1 / 2 z T Q c z > 0 \dot V_c(x)=-|x_1|^{-1/2}z^TQ_cz>0 V˙c(x)=x11/2zTQcz>0 U U U内,轨迹 V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0))必然会穿过 B r B_r Br的边界离开 U ∩ B r U\cap B_r UBr。因此原点是不稳定的。
注:此处和原文不一致。原文为For any initial point x 0 ∈ U ∩ B r x_0 \in U\cap B_r x0UBr, with B r = { z ∈ R 2 ∣ ∣ z ∣ ∣ ∣ ≤ r B_r=\{z\in \mathbb{R}^2 ||z||\mid \leq r Br={zR2∣∣z∣∣∣≤r, V c ( x 0 ) > 0 V_c(x_0)>0 Vc(x0)>0 , and,since V ˙ c ( x ) = z T Q c z > 0 \dot V_c(x)=z^TQ_cz>0 V˙c(x)=zTQcz>0 in U U U, the trajectory V ( ϕ ( t , x 0 ) ) V(\phi(t,x_0)) V(ϕ(t,x0)) has to leave U ∩ B r U\cap B_r UBr through the boundary of B r B_r Br. This implies that the origin is unstable.
(4) λ 1 , 2 \lambda_{1,2} λ1,2其中一个数是负数, k 1 ≠ 0 , k 2 = 0 k_1\neq 0,k_2=0 k1=0,k2=0。则 z 2 ( t ) z_2(t) z2(t)恒等于 z 2 ( 0 ) z_2(0) z2(0),所以不可能有渐进稳定性。
(5) λ 1 , 2 \lambda_{1,2} λ1,2的实部均为正数。所以矩阵A是Anti-Hurwitz。解ALE得对每一个负定的矩阵Q,均有一个正定解P。因此系统是不稳定的。

目前有关带干扰的有限时间滑模观测器还未完成。文章中标黄的位置是笔者不理解的地方或者是自己思考后的心得,文章难免有疏漏之处,希望读者可以指出,谢谢。12.10日

三、参考文献

[1].J. A. Moreno and M. Osorio, “Strict Lyapunov Functions for the Super-Twisting Algorithm,” in IEEE Transactions on Automatic Control, vol. 57, no. 4, pp. 1035-1040, April 2012, doi: 10.1109/TAC.2012.2186179.
[2].A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers. Amsterdam, The Netherlands: Elsevier, 2008, vol. 1, Deterministic Techniques, p. 774.
[3].A. Baccioti and L. Rosier, Liapunov Functions and Stability in Control Theory, 2nd ed. New York: Springer-Verlag, 2005.
[4].V. I. Bogachev, Measure Theory. Berlin, Germany: Springer-Verlag,2007, vol. I, p. 491.
[5]. H. K. Khalil, Nonlinear Systems, Third ed. Upsaddle River, NJ: Prentice–Hall, 2002, p. 750.

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值