GAN的优点

1、擅长无监督学习:在现实世界中,没有标签的数据多于有标签的数据。
2、在多种生成模型中,GAN可以生成最逼真的图像
3、GAN有强大的表达能力,可以在潜在空间(向量空间)中执行算数运算,并将其转换为对应特征空间内的运算,在潜在空间内,有一张戴眼镜男人的图片,减去神经网络中男人的向量,加上神经网络中女人的向量,最后会得到特征空间内有一张戴眼镜的女人的图像。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nefelibat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值