当下神经网络三大主流子领域:CNN、RNN和GAN。
今天咱们主要分享一下生成对抗网络——GAN的一些核心思想,并以CycleGAN为例进行阐述。
借自:https://github.com/eriklindernoren/Keras-GAN
·GAN
首先,常规的GAN网络长什么样,我们以https://github.com/eriklindernoren/Keras-GAN/tree/master/gan这份样本代码为例。
通俗的理解,GAN网络大致如下:

首先我们有正样本,就是我们的真实图片,经过D(discriminator),然后拟合到1;接着我们会给一些指定大小的随机数,经过G(generator)生成负样本,经过D,拟合为0。这样可以训练出一个非常强悍的鉴别器D,对正负样本能做出非常高精度的判断。在D的基础上,我们对

本文深入探讨生成对抗网络(GAN)的基本原理,以CycleGAN为例,阐述其核心思想。通过分析CycleGAN的网络结构,揭示其在风格迁移上的双向迁移能力,对比Pix2Pix的局限性。文章指出,尽管卷积神经网络(CNN)结构趋于成熟,但GAN仍有广阔的发展前景。
最低0.47元/天 解锁文章
6498

被折叠的 条评论
为什么被折叠?



