主流边缘端部署嵌入式平台

主流边缘端部署嵌入式平台

引言

AIoT开启了继物联网、人工智能后又一大想象无限的领域,同时也给智慧物联、人工智能在应用层面拓展更多可能性开启新的篇章。边缘计算对势头正盛的物联网的发展至关重要。近日,机器学习和数据科学咨询公司 Tryolabs 发布了一篇基准评测报告,测试比较了英伟达 Jetson Nano、谷歌 Coral 开发板(内置 Edge TPU)、英特尔神经计算棒这三款针对机器学习设计的边缘计算设备以及与不同的机器学习模型的组合。结果表明,无论是在推理时间还是准确度方面,英伟达的 Jetson Nano 都是当之无愧的赢家。另外他们也给出了在树莓派 3B 与英伟达 2080ti GPU 上的结果以供参考。

RK1808

RK1808人工智能计算棒

便携的边缘计算设备,有基于Movidius Myriad 2的神经计算棒一代,而后有基于Google Edge TPU的Coral神经计算棒、INTEL Myriad X的神经计算棒二代,“若派Ropal”神经计算棒,Intel加速棒等,虽然说各有特色,但还是有一个共同点,那就是不便宜,对于国内一些想开拓边缘计算领域的中小企业或者走量的企业来说,成本不是太好控制,因此推荐国产瑞芯微RK1808人工智能计算棒——一款物美价廉的深度学习开发工具。

img

基于RK1808 NPU芯片,主要面向基于人工智能平台以及边缘计算产品的深度学习开发者。

RK1808人工智能计算棒算是众多边缘计算设备中的佼佼者,外观时尚精致,尺寸只有60mm*19mm(差不多传统U盘大小),并且有多种颜色可选。接口采用USb3.0 Type A接口,无风扇设计,利用USB接口供电,使用时无需连接云端,即可为开发主机设备以及众多第三方的单板计算机提供基于深度学习网络模型的推理加速。

瑞芯微RK1808人工智能计算棒的内置芯片RK1808,这是在瑞芯微在CES2019消费电子展发布的一款内置高能效NPU的AIoT芯片解决方案,在硬件规格上,瑞芯微RK1808 AIoT芯片采用双核Cortex-A35架构,NPU峰值算力高达3.0TOPs,VPU支持1080P视频编解码,支持麦克风阵列并具有硬件VAD功能,支持摄像头视频信号输入并具有内置ISP。

RK1808芯片架构

img

优势

极致低功耗

  • 芯片采用22nm FD-SOI工艺,相同性能下功耗相比主流28nm工艺可降低30%左右;
  • 内置2MB系统级SRam,可实现always-on设备无DDR运行;
  • 具有硬件VAD功能,支持低功耗侦听远场唤醒。

强大AI运算能

### 轻量级目标检测算法概述 适用于板部署的目标检测算法通常需要满足低功耗、高效率以及实时性的需求。这些特性使得轻量级模型成为首选方案之一。以下是几种常见的轻量级目标检测算法及其特点: #### YOLO系列 YOLO (You Only Look Once) 是一种单阶段目标检测框架,其设计初衷是为了实现快速推理速度。随着版本迭代,该系列逐渐引入了许多优化技术来提升性能并降低计算复杂度。 - **YOLOv3**: 提供了多尺度预测功能,在不同分辨率下提取特征图以适应大小各异的对象[^1]。 - **YOLOv4 和 YOLOv5**: 这两个版本进一步增强了网络结构并通过改进激活函数(如 Mish 或 SiLU)、数据增强方法等方式提高了精度与运行效率[^2]。 对于嵌入式设备而言,可以考虑裁剪后的 Tiny 版本——例如 `yolov3-tiny` 或者 `yolov5s/yolov5n` ——它们显著减少了参数数量但仍保持较好的准确性水平。 #### SSD系列 SSD(Single Shot MultiBox Detector) 同样属于一次性完成分类定位任务的一类算法。它通过在多个预定义框上直接回归边界盒位置及类别概率值来进行对象识别工作。 - **MobileNet-SSD**: 结合 MobileNets 架构作为骨干网路部分,极大地降低了运算负担的同时维持了一定程度上的精确率表现[^3]。 - **SqueezeDet/Slimmable Networks with SSD**: 利用通道压缩机制减少冗余信息传递从而加快前向传播过程中的处理时间[^4]。 另外还有其他一些变体形式比如 DSSD(Dense Prediction from Deconvolutional Layers),不过由于资源消耗较大可能不太适合于边缘侧应用场景。 #### 其他值得注意的方法论 除了上述两大主流家族外还有一些专门针对移动定制开发出来的解决方案也值得探讨一下: - **EfficientDet**: 基于复合缩放法则构建而成的新一代高效能探测器,允许灵活调整宽度因子w,深度d以及输入图片尺寸r三方面之间的平衡关系达到最佳效果配置状态[^5]。 - **NanoDet(+)**: 主打极致简化操作流程同时兼顾良好泛化能力的小型化实例分割工具包,特别适配 ARM Cortex-A 系列处理器架构下的安卓手机平台环境使用场景[^6]。 综上所述,当选择具体实施方案时需综合考量实际硬件条件限制因素(如内存容量大小、CPU/GPU算力强弱等), 并结合预期业务指标要求做出合理判断决策。 ```python import torch from yolov5 import YOLOv5 model = YOLOv5('path/to/model.pt', device='cpu') # 加载模型到 CPU 上 results = model.predict(image_tensor) # 对图像张量执行推断 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metroplitan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值