NeRF:原理 + 实现 + 实践全流程配置+数据集测试【Ubuntu20.04 】【2025最新版】

一、引言

从三维建模、虚拟现实到电影级渲染,真实感建模一直是计算机视觉和图形学的核心目标。
在传统方法中,我们往往依赖:

  • 多视角立体(MVS)
  • 点云重建 + 网格拟合
  • 显式建模(如多边形、体素、TSDF)
    直到 2020 年,Google Research 提出了 Neural Radiance Fields(NeRF),用 神经网络建模一个连续隐式 3D 场景,突破了传统方法在细节、视角一致性、重建质量上的天花板。
    NeRF 不仅是新型表示方式,更是一种将图像建模与物理一致性结合的范式。

在这里插入图片描述

神经辐射场(Neural Radiance Fields, NeRF)是一种前沿的 3D 场景重建技术,利用深度学习从 2D 图像中建模场景的辐射场,实现高质量的新视角合成。NeRF 在虚拟现实、增强现实、影视特效和游戏开发等领域展现出巨大潜力。

二、什么是NeRF

NeRF 将一个 3D 场景表示为一个 多层感知机(MLP),输入为:

  • 三维空间坐标
  • 观察方向
    输出为:
  • 颜色
  • 体积密度
    换句话说,NeRF 建模的是一个连续的函数:
    在这里插入图片描述
    该函数表示某点在某观察方向上的颜色及其对光线的影响(体积密度)。

三、NeRF和核心技术:体积渲染(Volume Rendering)

为了从这个神经表示中合成图像,NeRF 引入了基于物理一致的体积渲染公式:
在这里插入图片描述
其中:

r ( t ) = o + t d \mathbf{r}(t) = \mathbf{o} + t\mathbf{d} r(t)=o+td 是射线函数

T ( t ) T(t) T(t) 是累积透射率

σ \sigma σ 是密度, c \mathbf{c} c 是颜色
实际实现中使用 分段积分近似,每条光线采样 N N N 个点,前向传播预测 ( σ i , c i ) (\sigma_i, \mathbf{c}_i) (σi,ci),累加渲染出图像像素值。

四、NeRF的训练原理

4.1 训练数据要求

  • 多视角图像(一般 20~100 张)
  • 每张图像对应的相机位姿(外参)+ 相机内参

4.2 损失函数

对每个像素比较预测颜色与真实图像颜色:
在这里插入图片描述

五、环境配置

5.1 硬件要求

  • GPU:NeRF 的训练和推理对计算性能要求较高,推荐使用 NVIDIA GPU(如 GTX 1080 Ti、RTX 2080 Ti 或更高型号)。
  • 内存:至少 16GB 系统内存,GPU 显存建议 8GB 以上。
  • 操作系统:Ubuntu 20.04 LTS。

5.2 软件安装

5.2.1 克隆NeRF-Pytorch代码

NeRF-Pytorch:https://github.com/yenchenlin/nerf-pytorch

git clone https://github.com/yenchenlin/nerf-pytorch.git

5.2.2 创建并激活虚拟环境


conda create -n nerf python=3.7
conda activate nerf

5.2.3 安装Pytorch

根据系统级CUDA决定安装的Pytorch版本,可以输入nvcc --version进行查看
在这里插入图片描述
安装支持cuda11.8的pytorch

pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

验证 PyTorch 是否支持 GPU:

python -c "import torch; print(torch.cuda.is_available())"

如果输出 True,说明安装成功且 GPU 可用

5.2.4 安装项目依赖

cd nerf-pytorch
pip install -r requirements.txt
conda install imagemagick   #安装 ImageMagick(用于处理 LLFF 数据集)

六、公共示例数据集测试

6.1 下载并准备测试数据集

我们将使用官方提供的 “lego” 示例数据集进行测试。这是一个合成数据集,适合快速验证环境和代码是否正常工作。

(1)下载 “lego” 数据集:

bash download_example_data.sh
  • 这将自动下载 “lego” 和 “fern” 数据集到 ./data 目录。
  • 下载完成后,检查 ./data/lego 目录,里面应包含 train、val 和 test 子目录。

(2)检察数据集结构

ls ./data/nerf_synthetic/lego

在这里插入图片描述

6.2 运行训练(测试数据集)

(1)修改配置文件

保证自己的数据路径与configs/fern.txt文件里的datadir路径相同:
在这里插入图片描述

(2)使用提供的配置文件 configs/lego.txt 进行训练:

python run_nerf.py --config configs/lego.txt

训练将开始,模型会保存在 ./logs 目录下。
根据你的 GPU 性能(例如我的 NVIDIA 4090),训练可能需要半小时左右。
你可以通过以下命令监控 GPU 使用情况:

nvidia-smi

(3)检查训练进度:

  • 训练过程中,日志会显示在终端上,包括损失值(loss)。
  • 中间结果会保存在 ./logs/lego 目录下,你可以用文件浏览器查看生成的图片。

6.3 结果输出

(1)输出目录

在这里插入图片描述

在训练了 200k 次迭代(在单个 4090 上训练 半小时)后,可以得到上述结果

(2)输出结构说明

1、主目录 logs/

存放所有训练日志、模型权重、渲染结果等输出文件的根目录。

2、实验场景目录 blender_paper_lego

每个独立训练的场景或实验对应一个子目录。

命名规则一般为数据集或场景名称,如这里的 blender_paper_lego 表示使用了 Blender Lego 数据集。

3、目录内详细文件介绍

(一) 模型权重(.tar 文件)

010000.tar、020000.tar … 200000.tar:

这些文件是模型的训练检查点(checkpoints)。
文件名数字表示训练的迭代次数(steps)。

文件内部存储了:
模型权重参数
优化器状态
当前训练进度

作用:
可用于恢复训练。
用于后续渲染与推理。
(二) 测试集渲染结果文件夹 (testset_xxxxxx)

如:testset_050000、testset_100000 等:

每个文件夹对应不同迭代次数下的测试集图像预测结果。
文件夹内包含:

渲染后的图片(.png),表示模型对测试集的推理结果。
图片以序号或场景名称为命名,便于观察模型随训练进展的效果变化。

(三) 视频文件 (.mp4)
视频文件通常有两种类型:

*_rgb.mp4:

RGB视频,展示模型从不同视角(一般是螺旋路径,spiral path)渲染出的彩色场景效果。

是模型可视化的直观表现,用于快速评估渲染质量。

*_disp.mp4:

Disparity(视差)视频,展示对应场景深度信息或视差图。

可用以直观地观察深度估计的质量。

示例:

blender_paper_lego_spiral_050000_rgb.mp4 表示迭代数 50,000 时模型渲染出的彩色视频。

blender_paper_lego_spiral_050000_disp.mp4 表示迭代数 50,000 时对应的深度渲染视频。

四、重要配置文件 (args.txt)
记录训练期间的全部超参数和配置选项。

如:

训练迭代次数 (N_iters)

学习率 (lrate)

数据集路径 (datadir)

模型架构参数(如隐藏层大小,深度等)

便于后续复现实验或调整优化参数。

五、如何使用这些文件?
恢复训练
使用 checkpoint 文件:

python run_nerf.py --config configs/lego.txt --ft_path ./logs/blender_paper_lego/200000.tar

单独渲染结果
生成图片:

python run_nerf.py --config configs/lego.txt --render_only --ft_path ./logs/blender_paper_lego/200000.tar

生成测试视频:

python run_nerf.py --config configs/lego.txt --render_test --ft_path ./logs/blender_paper_lego/200000.tar

六、实际情况参数调整建议

若显存不足或训练过慢:

降低 batch size 或训练图片的分辨率。

降低迭代次数或增加 lrate_decay(学习率衰减步数)。

若模型精度不足:

提高迭代次数 N_iters。

调整分层采样的数目 (N_samples, N_importance)

(3)可视化如下所示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 关于 NERF 数据集的获取 #### 官方推荐的数据集 NeRF 的官方论文以及后续改进版本通常会提供一些标准数据集用于验证模型效果。这些数据集可以通过特定链接下载,例如 NeRF Studio 提供了一个名为 **Poster** 的默认训练数据集,其下载方式需要通过代理访问[^2]。 #### 开源实现中的数据集示例 对于希望自行训练 NeRF 模型的研究者来说,可以参考开源项目的配套资源。例如,在 yenchenlin 大佬的 GitHub 实现中提供了详细的训练流程说明,并附带了一些常用的小规模数据集作为演示用途[^4]。该仓库不仅包含了完整的代码框架,还列举了几种常见的三维物体扫描图像序列,适合初学者快速上手。 #### 跨场景 NVS 测试数据集 除了单一场景下的神经辐射场重建外,部分研究工作进一步探讨了如何利用多场景联合建模来提升泛化性能。这类实验往往依赖更复杂的公开数据库支持。比如 PixelNeRF、MVSNeRF 和 IBRNet 等方法均采用了类似的设置来进行对比分析[^3]。具体而言,它们选取若干不同视角拍摄的照片组合成输入条件,从而评估各自算法在未见过的新位置生成逼真画面的能力。 以下是几个可能对你有所帮助的具体网址或者提示方向: - 如果追求高质量渲染成果展示,则可优先考虑查看 D-NeRF 项目页面上的相关内容介绍[^1]; - 对于想要深入理解理论原理并动手实践的朋友来讲,按照前述提到过的教程文档逐步操作不失为一种明智的选择; 最后提醒一下,由于网络环境差异等因素影响,实际操作过程中可能会遇到各种意想不到的情况,请保持耐心尝试解决! ```python import os from urllib.request import urlretrieve def download_dataset(url, save_path='./data'): """Download a dataset from given URL.""" if not os.path.exists(save_path): os.makedirs(save_path) filename = os.path.join(save_path, 'dataset.zip') try: print(f"Downloading {url} to {filename}") urlretrieve(url, filename) print("Download completed.") except Exception as e: print(f"Error occurred while downloading: {e}") # Example usage with placeholder link download_dataset('http://example.com/path/to/dataset', './nerf_data') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值