简介
在电商平台中,风控(风险控制)主要是为了保障平台的交易安全、防止欺诈行为、维护商家和用户的利益,同时避免平台自身遭受经济或声誉上的损失。
可以理解为:电商平台风控是在防“小偷”、防“老赖”、防“刷单”、防“跑路”、防“薅羊毛”等各种异常行为。
🔍 电商平台风控的核心目标:
- ✅ 保证用户买得安心
- ✅ 保护平台不被恶意利用
- ✅ 降低欺诈和运营风险
🧩 电商风控具体会做什么?
1. 用户身份与行为识别
- 新用户注册时识别是否为虚假账户或批量注册账号
- 登录、下单时检测是否为异常行为(如异地登录、频繁切换设备)
- 检测是否为刷单用户(虚假交易以提升销量)
2. 订单风险控制
- 下单后分析是否为恶意订单,如:
- 盗用别人账号下单
- 下完单就申请退款
- 大量无故退货/拒收
- 系统自动“打标签”判断订单风险高不高,高风险的可能需要手动审核或延迟发货
3. 支付风控
- 检测是否有盗刷信用卡、异常支付行为
- 监测支付设备、IP、银行卡、支付时间是否正常
4. 商家风控
- 监测商家是否有刷单、虚假发货、诱导好评等违规行为
- 防止“骗补贴”、“退货不退款”等行为
- 检查新商家是否为“空壳公司”或“跑路商家”
5. 优惠活动风控
- 防止**“薅羊毛”党**利用漏洞无限使用优惠券、满减、红包
- 限制同一人/同一设备/同一地址反复参加活动
🛠 技术手段都有哪些?
- 大数据分析:分析用户行为模式
- 规则引擎:基于设定的规则判断风险(比如一小时注册多个账号)
- 机器学习模型:动态判断哪些行为可能有风险
- 黑名单/白名单系统:记录异常账户/设备/IP
- 设备指纹识别:识别是否为同一设备在操作多个账号
📌 举个生活中的例子:
你在双11买了一部iPhone,下单用了一个新注册的账号、用了三张优惠券、收货地址是转运仓,收货人是“张三”,付款用了美国的信用卡。
系统一看这个订单就觉得很“怪”:
➡️ 新号、转运仓、国外卡、大额订单、多优惠——风险评分飙升!
可能会直接拦截订单、要求人脸验证、或限制发货。
挑战和难点
在电商平台中做风控,听起来像是“拦住坏人”,但现实远比想象中复杂。以下是一些典型挑战和难点,可以分为技术层面、业务层面、用户体验层面等:
🧠 一、技术层面的挑战
1. 欺诈行为复杂多变,套路更新快
- 骗子也“卷”起来了,不断迭代手法(比如用模拟器注册账号、团伙作案、利用AI生成虚假身份)
- 风控模型很容易滞后,而“黑产”往往能找到新漏洞迅速薅一波就走
2. 数据维度庞杂,难以建模
- 用户数据、行为数据、交易数据、支付数据、设备数据等,维度庞杂
- 如何从海量数据中提取有价值的“风险特征”,是建模的难点
3. 实时性要求高
- 一些风控动作需要毫秒级响应(比如下单支付时的风险判断)
- 模型需要既快又准,同时不能卡住用户正常交易流程
4. 样本极度不平衡
- 欺诈行为在整体数据中可能只占极小比例(千分之一、万分之一)
- 训练机器学习模型时容易“误判”为正常行为,导致识别率低
💼 二、业务与运营层面的挑战
1. 风控与业务目标的矛盾
- 业务部门希望“多成交、多补贴、多转化”
- 风控如果太严,会拦住一些正常用户,影响营收和用户体验
- 风控如果太松,又容易被“羊毛党”薅得精光
👉 典型的平衡问题:“放水”与“收紧”之间怎么拿捏?
2. 恶意行为隐蔽性强
- 很多“羊毛党”是人精操作,手法隐蔽,比如:
- 多设备+多身份切换
- 利用真实信息包装的“灰产账号”
- 利用熟人地址/快递点/中转仓批量收货
- 很难简单通过规则识别出来
3. 团伙行为识别难
- 一个人做坏事容易识别,但“有组织的黑产”会制造多个账号分布式操作
- 需要分析账号之间的“社交关系”和“轨迹重合度”,非常复杂
🙋♀️ 三、用户体验方面的难点
1. 误杀正常用户
- 正常用户被误判为风险行为,比如:
- 异地出差被当成盗号
- 家人帮忙下单被当成“多账号”
- 一次买太多被系统当成“黄牛”
- 会导致用户投诉、差评甚至流失
2. 风控流程繁琐
- 人脸验证、短信验证、人工审核、冻结账号等流程,正常用户遇到时体验很差
- 如果做得不顺滑,用户可能直接放弃下单、甚至卸载App
🧱 四、平台层面的挑战
1. 跨部门协同困难
- 风控需要和运营、技术、法务、客服等多方配合
- 但很多时候,风控部门是“背锅侠”:业务出了问题怪风控,风控拦住订单也怪风控
2. 模型迭代慢、验证难
- 上线一个新风控策略或模型,验证效果周期长(很多欺诈行为是“事后显现”的)
- 很多规则可能一上线就被“黑产”绕过去,效果难以持久
✅ 总结一句话:
电商风控是一场永无止境的“猫鼠游戏”:风控团队不断升级武器,黑产不断挖掘漏洞。技术要跟得上,策略要灵活,体验不能差,真是“又要马儿跑,又要马儿不吃草”。
市场行情
“风控做得好”通常是几个维度综合实力的体现,比如技术、数据量、行业经验、响应速度等。
不过,结合行业口碑和实际应用,下面这些公司在风控领域做得确实很不错,按类型来分一下说 👇
🏦 一、互联网巨头的风控能力(自研能力强 + 大数据优势)
1. 蚂蚁集团(支付宝)
- 属于风控界的“天花板”之一
- 旗下有专门的风控系统如 “神盾系统”
- 能实时监控交易行为、识别盗刷、识别黑灰产链条
- 应用于金融(借呗、花呗)、支付、电商(淘宝、天猫)
2. 腾讯(微信支付 / 金融科技)
- 依靠微信庞大的社交图谱,识别欺诈非常精准
- 主打 “设备指纹 + 行为模型 + 用户画像”
- 应用场景:红包、转账、商城下单、小游戏充值、广告反欺诈
3. 京东
- 电商风控非常成熟,从账号注册、下单、到售后全流程都有风控模块
- 有专门的“京东风控实验室”
- 特别擅长识别黄牛、虚假退货、刷单等行为
4. 拼多多
- 虽然以补贴起家,但风控系统为了防“羊毛党”投入非常大
- 黑产“刷爆拼多多”的历史事件后,他们的风控团队迅速成长
📦 二、做风控服务/解决方案的专业公司(To B)
1. 同盾科技
- 老牌风控公司,服务过上千家金融、电商、保险客户
- 提供反欺诈、信用评分、设备指纹、行为建模等服务
- 特点是模型和数据广、方案成熟
2. 数美科技
- 专注在内容安全+风控领域,电商、社交、直播平台常用
- 强在图像、语音、行为识别的实时风控,还可以防刷单、薅羊毛、虚假内容
3. 白山云
- 提供边缘计算和安全风控解决方案,偏技术中台型服务商
- 在大流量处理、内容分发、反爬虫、防盗链方面很有优势
4. 百度智能云(风控大脑)
- 在数据建模、AI识别上有百度AI加持,适合需要高度定制风控系统的企业
📈 风控好 ≠ 零风险
即便是这些大厂,也曾经被黑产“翻过车”:
- 淘宝被刷单过、拼多多被羊毛党薅过、微信被盗号过……
- 所以风控本质上是 持续博弈 + 技术演进 + 策略迭代
💡 如果你是:
- 做电商平台:可以参考蚂蚁、京东、数美的策略
- 做风控系统选型:可以对比同盾科技、白山云等的技术服务
- 想自己搭风控系统:可以用开源规则引擎 + 机器学习模型起步(我可以帮你设计架构)