2023年Diffusion Models还有哪些方向值得研究(好发论文)?

Diffusion Models专栏文章汇总:入门与实战

前言:笔者follow扩散模型的科研进展已经将近2年了,见证了diffusion从无人问津到炙手可热的过程。当下扩散模型还有哪些缺点?还有哪些需要改进的方向?还有哪些方向值得研究?还有哪些方向好发论文?针对这些问题博主给出一些自己的见解,欢迎大家在评论区多多讨论!

目录

方向一:结合传统方向

方向二:部署方向

方向三:加速训练 

方向四:人脸生成问题

方向五:加速推理

方向六:可控生成

方向七:从GANs研究发展中找灵感

后记


方向一:结合传统方向

个人认为这是最好发论文的方向,原因有两个:1)可以结合自己以前的科研积累,这些积累将会形成一定属于自己的科研壁垒。2)避开了热门方向、交叉研究等因素会让论文更好中稿。

例如我在近两年的顶会看到不少diffusion models结合生物、物理、化学等传统方向,也有图像分割、目标检测等CV方向。我只能表示:我看不懂,但我也没啥震撼。就水论文来说,真香!

  • 17
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 36
    评论
差分模型(diffusion model)是一种基于偏微分方程的算法,用于图像处理、计算机视觉等领域。在差分模型中,U-Net结构是一种常见的神经网络架构,用于处理图像分割问题。那么为什么差分模型钟爱U-Net结构呢? 首先,U-Net结构是一种全卷积神经网络,能够有效地处理不同尺度的特征。在图像分割中,需要同时考虑图像的全局和局部信息,而U-Net结构能够通过嵌套的卷积和池化操作,提取不同尺度的特征。此外,U-Net结构还具有跳跃连接(skip connections)的特点,能够将浅层和深层特征进行合并,进一步提高图像分割的准确性。 其次,U-Net结构还可以进行端到端的训练,避免了手工特征提取的繁琐过程。在差分模型中,U-Net结构可以和差分算法相结合,实现对图像的全局和局部信息的有效传播和融合。通过不断迭代更新,可以得到更准确的图像分割结果。 最后,U-Net结构还具有可扩展性和灵活性的特点。它可以使用不同的优化器、损失函数和正则化方法进行训练和调节,以适应不同的应用场景。此外,还可以通过增加网络深度和宽度等方式进一步提升网络性能。 综上所述,U-Net结构在差分模型中的应用得到了广泛的认可和应用。在今后的研究中,我们有信心通过不断探索和创新,进一步提高U-Net结构在图像分割和差分模型中的性能和实用性。
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值