2023年Diffusion Models还有哪些方向值得研究(好发论文)?

本文探讨了2023年扩散模型在结合传统方向、部署、加速训练、人脸生成、推理加速、可控生成及借鉴GANs研究中的潜在研究方向。针对模型的缺点,如参数量大、推理时间长,提出预训练优化、模型蒸馏等解决方案,并指出人脸生成和加速推理领域的挑战。建议研究人员结合自身积累,寻找创新点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion Models专栏文章汇总:入门与实战

前言:笔者follow扩散模型的科研进展已经将近2年了,见证了diffusion从无人问津到炙手可热的过程。当下扩散模型还有哪些缺点?还有哪些需要改进的方向?还有哪些方向值得研究?还有哪些方向好发论文?针对这些问题博主给出一些自己的见解,欢迎大家在评论区多多讨论!

目录

方向一:结合传统方向

方向二:部署方向

方向三:加速训练 

方向四:人脸生成问题

方向五:加速推理

方向六:可控生成

方向七:从GANs研究发展中找灵感

后记


方向一:结合传统方向

个人认为这是最好发论文的方向,原因有两个:1)可以结合自己以前的科研积累,这些积累将会形成一定属于自己的科研壁垒。2)避开了热门方向、交叉研究等因素会让论文更好中稿。

评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值