前言:部署扩散模型面临着两个棘手的挑战:参数过大和推理时间过长,因此目前想在手机端用上扩散模型看似“奢不可求”。最近谷歌研究院的最新一项研究研究了如何把端侧部署大型扩散模型的梦想变成现实,这篇博客就和大家一起学习一下。
目录
贡献概述
常见的大型扩散模型具有超过10亿个参数,并且由于设备上有限的计算和内存资源而带来挑战。作者提出了一系列针对大型扩散模型的实现优化,这些模型在配备gpu的移动设备上实现了最快推理延迟(对于512 × 512图像,在没有INT8量化的情况下,Stable diffusion 1.4在12秒内实现了20次迭代)。具体是