如何在手机端部署大型扩散模型?

本文探讨了如何在手机端部署大型扩散模型,通过Group Norm and GELU、提高Attention Module效率、Winograd卷积等优化手段,实现在GPU驱动的移动设备上高效运行。在三星S23 Ultra和iPhone 14 Pro Max上,模型的延迟显著降低,展示了端侧部署大型扩散模型的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion Models专栏文章汇总:入门与实战

前言:部署扩散模型面临着两个棘手的挑战:参数过大和推理时间过长,因此目前想在手机端用上扩散模型看似“奢不可求”。最近谷歌研究院的最新一项研究研究了如何把端侧部署大型扩散模型的梦想变成现实,这篇博客就和大家一起学习一下。

目录

贡献概述

方法详解

stable diffusion的组成

优化手段一:Group Norm and GELU

优化手段二:提高Attention Module的效率

优化手段三:Winograd Convolution

实验结果

论文和代码

论文地址

代码地址

个人思考


贡献概述

常见的大型扩散模型具有超过10亿个参数,并且由于设备上有限的计算和内存资源而带来挑战。作者提出了一系列针对大型扩散模型的实现优化,这些模型在配备gpu的移动设备上实现了最快推理延迟(对于512 × 512图像,在没有INT8量化的情况下,Stable diffusion 1.4在12秒内实现了20次迭代)。具体是

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值