解读HunYuan Video代码(1):揭秘核心双流+单流的MM-DiT结构

Diffusion models代码解读:入门与实战

前言:FLUX和HunYuan-Video是目前开源效果最好的图像生成模型和视频生成模型,背后成功的关键之一就是双流+单流MM-DiT。很多社区的朋友讨论说DiT的效果很多方面表现不如UNet,诚然,改进版本双流+单流MM-DiT才是彻底击败UNet的关键。这篇博客是解读HunYuan Video代码的第一篇,首先解读最核心的网络结构。

目录

MM-DiT总揽

双流+单流MM-DiT

MMDoubleStreamBlock

调制层

RoPE

Attention

MMSingleStreamBlock

Timestep 与 text token 拼接

Patch

Final Layer

UnPatch


MM-DiT总揽

有据可查的MM-DiT结构来自SD3

原始论文《Scaling Rectified Flow Transformers

### ComfyUI Hunyuan 项目介绍 ComfyUI 是一个用于创建图形化界面的工作流工具,主要用于简化机器学习模型的应用开发过程。通过拖拽组件的方式构建复杂的处理流程,使得开发者能够更高效地完成工作[^1]。 对于 Hunyuan 项目的集成,在特定场景下可以增强 ComfyUI 功能。例如,Hunyuan3D 提供了三维重建能力,而其部署可以通过 Git 进行克隆操作来获取源码并进一步设置环境变量等必要条件[^4]。此外,还有专门针对 ComfyUI 开发的插件如 `ComfyUI-Diffusers` ,该模块允许使用者借助 Hugging Face 上丰富的预训练模型库来进行扩散模型实验,并支持流式传输等功能扩展[^5]。 #### 安装与配置指导 为了使 ComfyUI 和 Hunyuan 结合得更紧密,通常建议按照官方文档中的说明逐步执行安装命令以及调整参数设定。当完成了基本框架的搭建之后,可以根据实际需求探索更多高级特性或是自定义节点的设计[^3]。 ```bash # 下载 Hunyuan3D 源代码仓库 git clone https://github.com/tencent/Hunyuan3D-1.git cd Hunyuan3D-1/ ``` 上述命令展示了如何从 GitHub 获取腾讯开源的 Hunyuan3D 工程文件夹,并进入该项目目录准备后续的操作步骤。 #### 使用案例展示 假设现在要利用 ComfyUI 来载来自 HuggingFace 的某个图像生成模型并通过 Web 界面实时查看效果变化,则可以在 ComfyUI 中添新的 Node 节点以调用对应的 API 接口或者直接运行 Python 函数实现交互逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值