评估穿越详解

特征穿越是数据预处理中的一个问题,尤其在预测任务中,它涉及将未来信息错误地纳入到历史特征中,导致模型训练时的信息泄露。例如,在用户购买行为预测中,如果使用了后一周的用户行为数据来构建特征,就犯了特征穿越的错误。这种现象本质上是信息不一致性,无论是时间穿越还是会话穿越,都可能影响模型的公正性和准确性。解决这个问题需要确保训练和测试数据集之间的信息隔离,以维护模型的公平性和预测能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是一种数据leakage, 比赛题出的不好经常会有利用leakage刷分的;

比如购买行为预测,给你前三个月的数据,预测后一周的用户购买行为,你用后一周的用户行为如点击率什么的,放进前三个月的特征中,就是特征穿越了。

穿越本质上是信息泄露的问题。无论时间穿越还是会话穿越,其核心问题都是训练数据中的信息以不同方式、不同程度泄露到了测试数据中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值