三维旋转——四元数

本文深入探讨了四元数的概念及其在三维空间中描述旋转的应用。四元数由一个实部和三个虚部组成,能够高效且无奇点地表示刚体旋转。文章详细解释了四元数的数学性质,如乘法、共轭和模,并介绍了如何从四元数转换到旋转矩阵,以及如何从旋转矩阵反向转换得到四元数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四元数是一种高阶复数,刻画刚体绕任意轴的旋转,四元数q表示为:

                                                                   

其中,i,j,k满足:

                                                                    

由于i,j,k的性质和笛卡尔坐标系三个轴叉乘的性质很像,所以可以将四元数写成一个向量和一个实数组合的形式:

可以推导出四元数的一些运算性质,包括:

                                              

* 四元数乘法

                                                      

                                                          

* 共轭四元数

                                                                 

* 四元数的模

                                                                       

 

四元数的直观意义
四元数(x,y,z,w)(x,y,z,w)表示绕轴(x0,y0,z0)(x0,y0,z0)旋转角度,他们之间的关系是:

w=cos⁡(α/2), x=x0⋅sin(α/2),y=y0⋅sin(α/2),z=z0⋅sin(α/2)
在使用的时候往往将四元数归一化,即要求四元数的模为1:
                                                           x2+y2+z2+w2=1
       

四元数可用来刻画三维空间中的旋转,假设一个空间三维点 p = [x; y; z] ,以及一个由轴角 n; θ 指定的旋转。三维点 p 经过旋转之后变成为 p′。如果使用矩阵描述,那么有 p′ = Rp。用四元数描述旋转    
                                                                                 

                                                                                         

四元数到旋转矩阵的转换

                                                                               
                                                

由旋转矩阵到四元数的转换

                                

 
open3d是一个用于处理三维数据(点云、三维模型等)的开源库。点云配准是将两个或多个点云数据进行对齐的过程,以便在一个全局坐标系下进行比较、分析或重建。其中,四元数法是一种常用的点云配准方法。 四元数是一种用四个实数表示的扩充复数,可以用于描述旋转变换。在点云配准中,使用四元数法是因为其具有以下优势: 第一,四元数具有紧凑的表示形式,只需要四个实数即可表示旋转变换,相较于旋转矩阵的九个实数表示方式节省了存储空间,降低了计算复杂度。 第二,四元数法能够有效地避免了“万向锁”问题。万向锁是指在使用欧拉角进行坐标变换时,由于旋转过程中会出现奇点,导致旋转角度无法精确表示的问题。而四元数法不会出现这个问题,具有更好的数值稳定性。 在open3d中,点云配准的四元数法通常有以下几个步骤: 首先,计算两个点云之间的特征描述子,例如FPFH(Fast Point Feature Histograms)或SHOT(Signature of Histograms of Orientations)。这些描述子能够表示点云的局部几何信息。 然后,根据特征描述子的相似性,寻找初始的点对应关系。 接下来,通过最小化点云之间的误差指标,例如最小化点到平面的距离或最小化点到点的距离,来优化点对应关系,并计算出旋转矩阵。 将旋转矩阵转换为四元数表示,即可完成点云的配准过程。 四元数法是open3d中常用的点云配准方法之一,其能够高效地实现点云的准确对齐。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值