高频滤波电路(电源那里的一大一小两个电容)

通信原理实验虽然结束有些天了,但是通信原理实验指导书上的滤波电路(如图1所示)一直在纠结着自己。改滤波电路跟自己之前见过的不大一样,两个滤波电容的容值是相等的,而这个电路的两个滤波电容的容值是不相等的,而且它们之间的值差别极大。这就很纳闷了,这到底是为什么呢?
在这里插入图片描述
碰到问题可不能置之不理。自己在图书馆查阅了一些电子电路分析和器件特性的相关书籍杂志,终于把问题弄清楚了。
原来这是一个电源的高频滤波电路。如图1所示,C1是一个2200uF的大电容(低频滤波电容),C2是一个只有0.01uF的小电容(高频滤波电容)。这是不是很奇怪呢?我们知道在同一频率下容量大的电容其容抗小,这一大一小的电容是并联在一起的,小的几乎对这个电路不起做作用啊,也就是没有意义咯,那还有啥用呢?
要是不查资料的话,还真的不知道竟然有这样的事(当然我不知道的还多呢):容量大的电容存在感抗特性(这是由于制造工艺所致的),就是这个大电容能等效一个纯电容与一个电感的串联。如图2所示。这样一来,这个大容量的电解电容在高频的情况下的阻抗反而大于低频时的阻抗。
在这里插入图片描述
这回大概清楚小电容C2的作用了。这是为了补偿大电容C1在高频时的不足,在电容C1上并上一个小电容C2。由于小电容的容量小,在制造时可以克服电感特性,所以小电容 C2几乎不存在电感。当在高频时,小电容C2的容抗已经很小,这样高频的干扰电流很容易通过C2滤波到地,而大电容C1由于感抗大而处于开路状态,没有滤波作用,即不工作。这就是为什么在C1上并一个小的C2的原因了。当频率较低时,小电容因其容抗大相当于开路而不工作。此时主要是C在工作,起滤波作用。要知道对于2200uF的电容是相当大的滤波电容了,滤波电容越大对滤波效果就越好。
由于电容具有隔直的作用,那这个滤波电路的作用就是从直流交流中(即含有各种频率)混合电压中滤掉交流电压,输出直流电压。这也就是为什么这个电路老是出现在直流电源的附近了。至此,我们应该明白这一大一小的在唱什么戏了。

### 滤波电路中大电容和小电容的作用 #### 大电容的作用 在滤波电路中,大电容主要用于减少低频成分的纹波电压。由于大电容器具有较大的储能能力,在输入电压较高时能够迅速充电并储存大量能量;当输入电压下降时,则可以缓慢放电以维持输出电压相对平稳。因此,增大电容容量有助于进一步降低输出电压中的波动幅度,使得负载获得更加稳定的直流供电[^1]。 ```python import numpy as np import matplotlib.pyplot as plt # 参数设置 f = 50 # 频率(Hz) T = 1/f # 周期(s) t = np.linspace(0, T, 1000) # 时间轴 Vp = 10 # 输入峰值电压(V) # 计算未加电容情况下的全波整流输出电压 v_out_no_capacitor = abs(np.sin(2*np.pi*f*t)) * Vp / (np.sqrt(2)) plt.figure(figsize=(8,6)) plt.plot(t,v_out_no_capacitor,label='No Capacitor') plt.title('Output Voltage Without Capacitor Filtering') plt.xlabel('Time[s]') plt.ylabel('Voltage[V]') plt.legend() plt.grid(True) plt.show() # 加入不同大小的大电容后的效果对比 C_large = 470e-6 # 较大的电容(F) RC_time_constant_large = R*C_large # RC时间常数 tau_large = RC_time_constant_large/(2*np.pi*f) def capacitor_discharge_curve(C,Vp,t,R,f): tau = C*R/(2*np.pi*f) v_c = [] for ti in t: if int(ti/T)%2==0: vc_i = Vp*(1-np.exp(-ti/tau)) else: vc_i = Vp*np.exp(-(ti%T)/tau) v_c.append(vc_i) return v_c v_out_with_large_C = capacitor_discharge_curve(C_large,Vp,t,R,f) plt.figure(figsize=(8,6)) plt.plot(t,v_out_with_large_C,'r',label=f'With Large Capacitor ({int(C_large*1e6)}uF)') plt.title(f'Output Voltage With {int(C_large*1e6)}uF Capacitor Filtering') plt.xlabel('Time[s]') plt.ylabel('Voltage[V]') plt.legend() plt.grid(True) plt.show() ``` #### 小电容的作用 相比之下,小电容虽然单独来看对于平滑整个周期内的平均电压贡献有限,但在高频噪声抑制方面却有着不可忽视的重要性。因为较小数值的电容对快速变化信号有更好的响应速度,所以它们特别适合用来消除那些频率较高的瞬态干扰或脉冲噪声。此外,多个适当的小电容组合还可以构成多级LC滤波器的一部分,共同实现更佳的整体滤波特性和更高的效率[^2]。 ```python C_small = 0.1e-6 # 较小的电容(F) RC_time_constant_small = R*C_small # RC时间常数 tau_small = RC_time_constant_small/(2*np.pi*f) v_out_with_small_C = capacitor_discharge_curve(C_small,Vp,t,R,f) plt.figure(figsize=(8,6)) plt.plot(t,v_out_with_small_C,'g',label=f'With Small Capacitor ({int(C_small*1e6)}uF)') plt.title(f'Output Voltage With {int(C_small*1e6)}uF Capacitor Filtering') plt.xlabel('Time[s]') plt.ylabel('Voltage[V]') plt.legend() plt.grid(True) plt.show() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值