智二手车特征工程

Datawhale 零基础入门数据挖掘-Task3 特征工程

三、 特征工程目标

Tip:此部分为零基础入门数据挖掘的 Task3 特征工程 部分,带你来了解各种特征工程以及分析方法,欢迎大家后续多多交流。

赛题:零基础入门数据挖掘 - 二手车交易价格预测

地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX

3.1 特征工程目标

对于特征进行进一步分析,并对于数据进行处理

完成对于特征工程的分析,并对于数据进行一些图表或者文字总结并打卡。

3.2 内容介绍

常见的特征工程包括:

异常处理:
通过箱线图(或 3-Sigma)分析删除异常值;
BOX-COX 转换(处理有偏分布);
长尾截断;
特征归一化/标准化:
标准化(转换为标准正态分布);
归一化(抓换到 [0,1] 区间);
针对幂律分布,可以采用公式: l o g ( 1 + x 1 + m e d i a n ) log(\frac{1+x}{1+median}) log(1+median1+x)
数据分桶:
等频分桶;
等距分桶;
Best-KS 分桶(类似利用基尼指数进行二分类);
卡方分桶;
缺失值处理:
不处理(针对类似 XGBoost 等树模型);
删除(缺失数据太多);
插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
分箱,缺失值一个箱;
特征构造:
构造统计量特征,报告计数、求和、比例、标准差等;
时间特征,包括相对时间和绝对时间,节假日,双休日等;
地理信息,包括分箱,分布编码等方法;
非线性变换,包括 log/ 平方/ 根号等;
特征组合,特征交叉;
仁者见仁,智者见智。
特征筛选
过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
降维
PCA/ LDA/ ICA;
特征选择也是一种降维。
3.3 代码示例

3.3.0 导入数据

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

%matplotlib inline
train = pd.read_csv(‘train.csv’, sep=’ ‘)
test = pd.read_csv(‘testA.csv’, sep=’ ')
print(train.shape)
print(test.shape)
(150000, 30)
(50000, 30)
train.head()

name regDate model brand bodyType fuelType gearbox power kilometer notRepairedDamage … v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
0 736 20040402 30.0 6 1.0 0.0 0.0 60 12.5 0.0 … 0.235676 0.101988 0.129549 0.022816 0.097462 -2.881803 2.804097 -2.420821 0.795292 0.914762
1 2262 20030301 40.0 1 2.0 0.0 0.0 0 15.0 - … 0.264777 0.121004 0.135731 0.026597 0.020582 -4.900482 2.096338 -1.030483 -1.722674 0.245522
2 14874 20040403 115.0 15 1.0 0.0 0.0 163 12.5 0.0 … 0.251410 0.114912 0.165147 0.062173 0.027075 -4.846749 1.803559 1.565330 -0.832687 -0.229963
3 71865 19960908 109.0 10 0.0 0.0 1.0 193 15.0 0.0 … 0.274293 0.110300 0.121964 0.033395 0.000000 -4.509599 1.285940 -0.501868 -2.438353 -0.478699
4 111080 20120103 110.0 5 1.0 0.0 0.0 68 5.0 0.0 … 0.228036 0.073205 0.091880 0.078819 0.121534 -1.896240 0.910783 0.931110 2.834518 1.923482
5 rows × 30 columns

train.columns
Index([‘name’, ‘regDate’, ‘model’, ‘brand’, ‘bodyType’, ‘fuelType’, ‘gearbox’,
‘power’, ‘kilometer’, ‘notRepairedDamage’, ‘regionCode’, ‘seller’,
‘offerType’, ‘creatDate’, ‘price’, ‘v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’,
‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,
‘v_14’],
dtype=‘object’)
test.columns
Index([‘name’, ‘regDate’, ‘model’, ‘brand’, ‘bodyType’, ‘fuelType’, ‘gearbox’,
‘power’, ‘kilometer’, ‘notRepairedDamage’, ‘regionCode’, ‘seller’,
‘offerType’, ‘creatDate’, ‘price’, ‘v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’,
‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,
‘v_14’],
dtype=‘object’)
3.3.1 删除异常值

这里我包装了一个异常值处理的代码,可以随便调用。

def outliers_proc(data, col_name, scale=3):
“”"
用于清洗异常值,默认用 box_plot(scale=3)进行清洗
:param data: 接收 pandas 数据格式
:param col_name: pandas 列名
:param scale: 尺度
:return:
“”"

def box_plot_outliers(data_ser, box_scale):
    """
    利用箱线图去除异常值
    :param data_ser: 接收 pandas.Series 数据格式
    :param box_scale: 箱线图尺度,
    :return:
    """
    iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
    val_low = data_ser.quantile(0.25) - iqr
    val_up = data_ser.quantile(0.75) + iqr
    rule_low = (data_ser < val_low)
    rule_up = (data_ser > val_up)
    return (rule_low, rule_up), (val_low, val_up)

data_n = data.copy()
data_series = data_n[col_name]
rule, value = box_plot_outliers(data_series, box_scale=scale)
index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
print("Delete number is: {}".format(len(index)))
data_n = data_n.drop(index)
data_n.reset_index(drop=True, inplace=True)
print("Now column number is: {}".format(data_n.shape[0]))
index_low = np.arange(data_series.shape[0])[rule[0]]
outliers = data_series.iloc[index_low]
print("Description of data less than the lower bound is:")
print(pd.Series(outliers).describe())
index_up = np.arange(data_series.shape[0])[rule[1]]
outliers = data_series.iloc[index_up]
print("Description of data larger than the upper bound is:")
print(pd.Series(outliers).describe())

fig, ax = plt.subplots(1, 2, figsize=(10, 7))
sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
return data_n

我们可以删掉一些异常数据,以 power 为例。

这里删不删同学可以自行判断

但是要注意 test 的数据不能删 = = 不能掩耳盗铃是不是

train = outliers_proc(train, ‘power’, scale=3)
Delete number is: 963
Now column number is: 149037
Description of data less than the lower bound is:
count 0.0
mean NaN
std NaN
min NaN
25% NaN
50% NaN
75% NaN
max NaN
Name: power, dtype: float64
Description of data larger than the upper bound is:
count 963.000000
mean 846.836968
std 1929.418081
min 376.000000
25% 400.000000
50% 436.000000
75% 514.000000
max 19312.000000
Name: power, dtype: float64
output_12_1

3.3.2 特征构造

训练集和测试集放在一起,方便构造特征

train[‘train’]=1
test[‘train’]=0
data = pd.concat([train, test], ignore_index=True, sort=False)

使用时间:data[‘creatDate’] - data[‘regDate’],反应汽车使用时间,一般来说价格与使用时间成反比

不过要注意,数据里有时间出错的格式,所以我们需要 errors=‘coerce’

data[‘used_time’] = (pd.to_datetime(data[‘creatDate’], format=’%Y%m%d’, errors=‘coerce’) -
pd.to_datetime(data[‘regDate’], format=’%Y%m%d’, errors=‘coerce’)).dt.days

看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。

但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%

我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;

data[‘used_time’].isnull().sum()
15072

从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识

data[‘city’] = data[‘regionCode’].apply(lambda x : str(x)[:-3])

计算某品牌的销售统计量,同学们还可以计算其他特征的统计量

这里要以 train 的数据计算统计量

train_gb = train.groupby(“brand”)
all_info = {}
for kind, kind_data in train_gb:
info = {}
kind_data = kind_data[kind_data[‘price’] > 0]
info[‘brand_amount’] = len(kind_data)
info[‘brand_price_max’] = kind_data.price.max()
info[‘brand_price_median’] = kind_data.price.median()
info[‘brand_price_min’] = kind_data.price.min()
info[‘brand_price_sum’] = kind_data.price.sum()
info[‘brand_price_std’] = kind_data.price.std()
info[‘brand_price_average’] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={“index”: “brand”})
data = data.merge(brand_fe, how=‘left’, on=‘brand’)

数据分桶 以 power 为例

这时候我们的缺失值也进桶了,

为什么要做数据分桶呢,原因有很多,= =

1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;

2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;

3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;

4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;

5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性

bin = [i*10 for i in range(31)]
data[‘power_bin’] = pd.cut(data[‘power’], bin, labels=False)
data[[‘power_bin’, ‘power’]].head()

power_bin power
0 5.0 60
1 NaN 0
2 16.0 163
3 19.0 193
4 6.0 68

利用好了,就可以删掉原始数据了

data = data.drop([‘creatDate’, ‘regDate’, ‘regionCode’], axis=1)
print(data.shape)
data.columns
(199037, 38)

Index([‘name’, ‘model’, ‘brand’, ‘bodyType’, ‘fuelType’, ‘gearbox’, ‘power’,
‘kilometer’, ‘notRepairedDamage’, ‘seller’, ‘offerType’, ‘price’, ‘v_0’,
‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’,
‘v_11’, ‘v_12’, ‘v_13’, ‘v_14’, ‘train’, ‘used_time’, ‘city’,
‘brand_amount’, ‘brand_price_average’, ‘brand_price_max’,
‘brand_price_median’, ‘brand_price_min’, ‘brand_price_std’,
‘brand_price_sum’, ‘power_bin’],
dtype=‘object’)

目前的数据其实已经可以给树模型使用了,所以我们导出一下

data.to_csv(‘data_for_tree.csv’, index=0)

我们可以再构造一份特征给 LR NN 之类的模型用

之所以分开构造是因为,不同模型对数据集的要求不同

我们看下数据分布:

data[‘power’].plot.hist()
<matplotlib.axes._subplots.AxesSubplot at 0x12904e5c0>
output_23_1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值