FastestDet---模型训练

这篇博客介绍了如何使用FastestDet进行目标检测模型的训练。首先,数据集需按照YOLO格式准备,包括类别ID、中心点坐标和宽高。接着,提供了一个将VOC格式转换为YOLO格式的代码示例。接着,详细说明了配置文件的修改,特别是yaml文件的调整。训练时,使用预训练的shufflenetv2.pth模型,并指定了配置文件。最后,提醒读者在train.py中调整模型保存设置。
摘要由CSDN通过智能技术生成

代码:https://github.com/dog-qiuqiu/FastestDet

一、构造数据集
数据集格式YOLO相同,每张图片对应一个txt标签文件。标签格式:“category cx cy wh”,category为类别id,cx, cy为归一化标签框中心点的坐标,w, h为归一化标签框的宽度和高度,
.txt标签文件内容示例如下:
0 0.51 0.32 0.0284 0.025
1 0.47 0.32 0.0625 0.1125
数据集文件结构如下:
在这里插入图片描述
images路径下分train和val两个文件夹,每个文件夹下:
在这里插入图片描述
如下为VOC转YOLO的代码:

import xml.etree
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ghx3110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值