群体智能动态优化算法及其应用综述(A survey of swarm intelligence for dynamic optimization: Algorithms and applicatio)

A survey of swarm intelligence for dynamic optimization: Algorithms and applications

摘要

群体智能算法,包括蚁群优化、粒子群优化、蜜蜂启发算法、细菌觅食优化、萤火虫算法、鱼群优化等,已被证明是解决平稳环境下复杂优化问题的有效方法。大多数SI算法都是为了解决平稳优化问题而发展起来的,因此它们能有效地收敛于(近似)最优解。然而,现实世界中的许多问题都有一个随时间变化的动态环境。对于这种动态优化问题(DOPs),传统的SI算法一旦收敛到一个解,就很难跟踪到变化的最优解。在过去的二十年中,由于其自适应能力,使用SI算法对DOPs进行寻址的兴趣越来越大。本文综述了国际单位制动态优化(SIDO)的研究进展,主要集中在离散、连续、约束、多目标和分类问题以及实际应用中。此外,本文还重点研究了集成在SI算法中的动态变化增强策略、SIDO中使用的性能度量和基准生成器。最后,对该课题未来的发展方向提出了一些思考。
关键词:群体智能,动态优化,蚁群优化,粒子群优化

一.前言

群体智能是一类重要的优化方法。SI是一个系统的性质,在这个系统中,与环境局部交互作用的主体的集体行为导致连贯的功能性全局模式的出现。与进化算法(EAs)不同,SI算法的灵感来源于简单的行为和智能体之间的自组织交互,如蚁群觅食、鸟类群集、动物放牧、细菌生长、蜜蜂、鱼类教育等。SI一词最早由Beni[1]在细胞机器人系统中使用,在该系统中,简单的智能体通过邻域交互来组织自己,后来在[2,3,4]中建立起来。
目前主流的算法有蚁群算法(ACO)和粒子群算法(PSO)。较不流行的SI算法包括人工蜂群(ABC)[7]、细菌觅食优化(BFO)[8]、萤火虫算法(FA)[9,10]、人工鱼群优化(AFSO)[11]和许多其他算法。最初,SI算法是为平稳优化问题设计的。然而,现实世界中的许多优化问题都受到动态环境的影响。动态优化问题(DOP)可能会发生变化在目标函数、约束条件、问题实例中,Pareto前沿或集(在动态多目标优化问题中)引起最优值的变化。因此,DOPs比平稳优化问题更具挑战性,因为需要对变化的最优值进行重复优化[12]。
动态优化领域与EAs、knownas进化动态优化(EDO)密切相关[12]。然而,在不同的dop上应用SI算法已经成为人们越来越感兴趣的问题。江户受到了广泛的关注,有几项调查[13,12,14,15]和几本书[16,17,18,19,20],而SI动态优化(SIDO)并没有受到太多的关注,除了一些在[14]中对PSO和在[15]中作为江户调查的子部分的ACO的非常简短的评论。本文的目的是扩展对蚁群算法和粒子群优化算法的这些评论,并对现有的与SIDO相关的工作进行全面的综述,其中也包括不太流行和最新的SI算法。本次调查的重点将是根据应用对SI算法进行分类,并回顾与SI算法集成以应对动态变化的策略。DOPs主要分为离散空间问题和连续空间问题,并对它们的应用作了进一步的分类。本文还回顾了SI所解决的实际问题,以及SIDO的性能测量和基准生成器。
论文的其余部分安排如下。第二节简要介绍了DOPs的概念,描述了离散DOPs和连续DOPs的区别及其应用。此外,还描述了SIDO中常用的基准生成器和性能度量。第3节简要介绍了不同的SI算法。第4节回顾了SIDO的算法和应用,SIDO按问题的类别排列,即离散、连续、约束、多目标和分类问题。第5节回顾了使用SI算法的实际应用。第六部分对本文进行了总结,并对SIDO未来的研究问题和方向进行了总结。

二.动态优化

2.1动态优化问题

DOP可以直观地定义为一系列需要优化的静态问题实例[21]。“动力性”的两个主要方面由环境变化的频率和幅度来定义。前者和后者的参数分别对应于问题环境变化的速度和程度。其他方面包括动态变化的可预测性、可探测性和时间联系[22,23]。前两个方面分别对应于在执行期间是否可以预测或检测动态变化,后一个方面对应于现在作出的处理动态变化的决策是否依赖于任何先前的决策。
环境变化可能涉及目标函数(或考虑动态多目标问题时的函数[24,25])、输入变量、问题实例和约束(例如,动态约束优化[26])。形式上,DOP可以定义如下:
DOP=optimizef(x,t)subject to X(t)⊆S,t∈T (1)
其中S是搜索空间,t是时间,f:S×T→R是给每可能的解x∈S赋值(即R)的目标函数并且X(t)是在时间t时的x∈X(t)⊆S的可行解集。每个可行解x由优化变量x={x_1…,x_n}。每个解x∈X(t)有一组邻域N(x)⊆X(t),其中N(x)是一个将邻域赋给x的函数。局部最优解是最小化问题的f(x^’,t)≤f(x,t)),∀ x∈N(x)或最大化问题的f(x^’,t)≥f(x,t)),∀ x∈N(x)的可行解。

2.2离散空间与连续空间

在搜索空间X(t)的定义上有不同的优化问题类别。本文考虑了两类基本问题:
(1)离散优化问题,其中所有的优化变量都是离散的,取值x∈D_i={v_i1,…,v_iD },i=1,…,n
(2)连续优化问题,其中所有的优化变量都是连续的,取值x∈D_i⊆R,i=1,…,n
离散优化问题与连续优化问题的主要区别在于离散优化问题具有有限的搜索空间。更准确地说,它们的特征是一组有限的变量值,例如,限制为值0和1的二进制值或从一组有限元素中提取的对象。不同的是,连续优化问题中的每一个变量值都可以假设无穷多个值,例如实数。由于计算机本质上是数字的,所以表示离散变量是直接的。相反,表示连续变量需要施加一定的限制,因为不可能表示无限多的值。
在不提供免费午餐(NFL)的情况下,任何在计算机系统中运行的优化问题都包含一个有限域,因此,可以认为是离散的。NFL的另一种方法表明,理论如此成立用于任意域和共域。相比之下,其他的研究[29,30]表明NFL定理不适用于连续域,尽管它的软形式NFL适用于可数无限域。然而,在[31]中,证明了NFL确实在连续域中成立,因为[29,30]中作者的结论是从他们施加的人工约束中得出的,该人工约束考虑的函数是可测量的。附加的人工约束被施加,但可测量性足以使NFL变得微不足道。
然而,处理离散和连续问题的方法通常不同。例如,在离散问题的情况下,在开始优化过程之前预先定义了可用值集。因此,适当的个体必须选择可能的最佳值组合以找到解决方案。在连续出现问题的情况下,这种方法可能没有效率。相反,求解器通常使用实值变量的灵活浮点表示。这样,就可以更有效地找到具有所需精度的解决方案。

2.3应用

离散优化问题和连续优化问题都有广泛的应用,稍后将分别在表2和表3中进行总结。在运输、调度、管理、生产、设施控制等领域,大多数实际问题都包含有限个可能的解。因此,它们可以表示为离散优化问题。
例如,许多现实世界中的网络环境优化问题,如道路系统、社会网络、电信网络、铁路网络等,往往是用加权图来建模的。由加权图建模的基本离散优化问题是旅行商问题(TSP)。TSP在路径问题和调度问题中有着广泛的应用,如车辆路径问题(VRP),它在运输、货物配送和物流等领域有着密切的联系。VRP中的弧路由问题,即容量分配问题,在现实世界中也有许多应用,如盐路由优化问题、城市垃圾收集问题和除雪问题。
不同的是,持续优化中的应用排除了计算金融中的实际问题,可以用于医学研究的人工神经网络诊断,道路系统交通预测,语音和面部识别,并预测天气或客户需求。而且,它可能包括最佳形状的设计,例如机翼,涡轮机,发动机,发电厂等。

2.4测试

跟踪运动最优(TMO)的目的是在任何时刻找到环境的最优解。研究人员在TMO中从不同的角度看待他们的算法[32]。一些研究者更关注系统的极端行为,特别是系统所能做的最好的,例如修改的离线性能[33,17],集体平均适应度[34],最好的变化前性能[35,36]。不同的是,其他研究人员希望观察“一个算法找到的解离移动最优值有多近”[37,38]。因此,测量要求在动态变化期间已知全局最优值,例如离线误差[39]、平均得分[40]、精度[41]和基于算法找到的解与全局最优值之间的距离的其他测量[42,43]。其他人则关注能够将总体描述为一个整体的度量,例如平均性能或平均健壮性[44]。
最近,DOPs的一个新视角被建立,称为鲁棒优化超时(robust optimization over time,ROOT),其目标是找到随时间而鲁棒的解序列[45]。特别是,当一个解决方案的质量在给定的时间间隔内可以被环境变化所接受时,该解决方案是随时间而健壮的。关于SI算法,到目前为止,TMO主要用于所有这些算法。相比之下,ROOT只用于PSO算法[46]。当使用PSO[47]和ACO[48,49]处理问题不确定性时,鲁棒优化被认为是有用的,例如,减少计算工作量。
除了涉及算法性能的度量之外,其他度量还涉及算法的行为。常见的例子有:解的多样性[50,51,52,39]、稳定性[53,41]、反应性[41]、稳健性[44]、交叉熵[54]、peakcover[17]和λ-分支[55]2。为了评价算法对可行区域的跟踪和定位能力,提出了其他性能指标,如:可行时间比、最优区域跟踪指标、局部搜索覆盖、约束条件评价次数等。此外,对现有的测量结果进行了修改动态约束优化问题,如:用峰值覆盖来计算每个周期中唯一可行区域的个数,用离线误差来将最优误差视为正态,但如果没有可行解,则考虑当前最差可能值[56]。
当然,以上所有DOPs的测量都假设一个单一的目标。处理多个对象时使用不同的度量,例如:间距[57]、超体积比[58]、S-和FS度量[59]、精度[60]、稳定性[60]、可变空间世代距离[61]和最大传播[61]。

截图来自A survey of swarm intelligence for dynamic optimization: Algorithms and applications

2.5基准生成器

基准生成器是DOPs中必不可少的工具,因为SIDO和动态优化中可用的理论工作有限[62,63]。它们使研究人员能够开发和评估DOPs的新算法,更重要的是将它们与现有算法进行比较。
2.5.1动态的产生
构造动态测试问题的一个简单方法是在会导致环境变化的不同静态实例之间切换[64]。按照此方法生成动态环境的基准问题是为单个问题指定的。在其他一些情况下,研究人员更喜欢创建自己定制的基准问题,这些问题的目标是模拟一些现实世界的场景(65、66、37、67、68、69),这些场景又是针对特定问题,甚至是问题的特定实例开发的。
已经有人提出了几个能量曲线动态基准生成器,用于重新塑造适应度环境(对于连续问题)或将搜索过程移动到适应度环境的不同位置(对于离散问题)。综合调查见[13,14]。可能最常用的DOP基准生成器是:(1)移动峰值基准(MPB)[4];(2)广义动态基准生成器(GDBG)[40];(3)二进制编码问题的异或(XOR)DOP生成器[70];(4)置换编码问题的动态基准生成器(DBGP)[71]。前两个基准生成器在连续域中工作,它们使用参数可调的函数来模拟移动的地形。考虑到连续空间可以建模为“圆锥体场”[72],那么每个圆锥体可以单独调整以表示不同的动力学。图1显示了分别属于MPB和GDBG的两个案例的适应度景观。
由于连续空间具有无穷多个变量值,因此在开发求解复杂数学函数的基准时会受到某些限制。MPB[4]是在连续空间中测试算法性能的主要基准之一。MPB问题中的每个峰值都是一个coneshape。这将是一个容易的算法,以开发一个局部的最佳健身景观。克服像MPB和DF1[72]这样的DOPs的限制(类似的带有MPB的基准生成器),GDBG基准由Li等人开发。[40],最初是为2009年IEEE DOPs进化计算竞赛而提出的。与MPB问题相比,GDBG有一个更复杂的适应度环境,这是因为搜索空间中存在大量的旋转优化。在GDBG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值