unbutun18.04+RTX2070+cuda+cudnn安装+anaconda+opencv
一、安装anaconda3
本人下载的版本:Anaconda3-2019.03-Linux-x86_64.sh
anaconda3官网下载地址: link.
anaconda3清华源下载地址link
输入下面命令进行安装:
bash Anaconda3-2019.03-Linux-x86_64.sh
按回车进入安装说明,最后输入yes
设置文件的安装位置按回车选择默认的安装位置
设置是否加入环境变了,本人选择yes
执行运行 conda install numpy
测试一下吧,看看有没有问题
解决spyder运行失败问题,运行下面命令:
conda install pyopengl
建立一个 conda 计算环境名字叫tensorflow: 在终端输入一下命令即可,我这里是Python3.6版本
conda create -n tensorflow python=3.6
激活tensorflow环境,继续在终端输入一下命令:
source activate tensorflow
在tensorflow环境下,在终端用conda安装spyder。输入一下命令:
conda install spyder
然后会看见安装目录位于我们之前建好的tensorflow环境下,也会看到安装spyder会安装许多依赖包,然后输入y,大概10分钟后就安装好了。这时我们在终端输入spyder
打开spyder,在IPython console下输入import tensorflow
,如果没有报错则表明安装成功了。
注意每次要使用tensorflow时,一定要先在终端激活tensorflow环境:source activate tensorflow
然后输入spyder
打开spyder,这里的这个spyder是tensorflow环境下的spyder,不使用tensorflow时使用以下命令关掉tensorflow环境source deactivate
二、安装cuda 10.1
由于ubuntu18.04版本的gcc是7.3版本,但是编译cuda需要的版本要低于6.0,因此需要对gcc进行降级
安装gcc4.8:
sudo apt-get install gcc-4.8
sudo apt-get install g++-4.8
将gcc4.8与gcc7.3设置到gcc的候选中,之后就可以切换gcc版本.
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 100
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 100
执行如下命令进行切换:
sudo update-alternatives --config gcc
sudo update-alternatives --config g++
根据自己的实际需要选择相应的版本好:
cuda与cudnn版本的选择:
之前就一直在纠结一个问题安装cuda与cudnn的版本要怎么选,怎么不同的人选择的版本都不一样,要怎么搭配,后来终于搞清楚了,要确定cuda的版本,要先知道cudnn的版本,我们先去官网看看cudnn有那些版本可以下载link,看看下面的这幅图片,官方已经给出了cuda与cudnn搭配的建议。
安装依赖的相关的包:
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
或sudo apt-get install python-pip python-dev
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
开始安装
sudo sh cuda_10.1.105_418.39_linux.run
需要注意的是,之前已经安装过显卡驱动程序,故在提问是否安装显卡驱动时选择no,其他 选择默认路径或者yes即可。
修改环境变量:
sudo gedit .bashrc
export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
更新:
source .bashrc
执行nvcc -V看看是否安装成功.
测试
cd /usr/local/cuda-10.1/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
cd ../bandwidthTest
sudo make
./bandwidthTest
三、安装cudnn
下载链接link下载 cuDNN Runtime Library for Ubuntu18.04 (Deb)
安装deb安装包
sudo dpkg -i libcudnn7_7.5.0.56-1+cuda10.1_amd64.deb
拷贝测试demo:
cp /usr/src/cudnn_samples_v7/ ~ -raf //拷贝到home目录
cd ~/cudnn_samples_v7/mnistCUDNN //进入相关测试项目
make clean && make //编译
./mnistCUDNN //运行测试
sudo dpkg --contents libcudnn7_7.5.0.56-1+cuda10.1_ //用于查看安装包安装的信息
四、安装tensorflow
我们采用pip的方式安装tensorflow,在安装之前先更新一下pip的源:
升级pip到最新版本
sudo apt-get install python-pip python-dev
安装命令:
pip install tensorflow-gpu==1.7
卸载命令
sudo pip uninstall tensorflow-gpu
五、添加keras的安装
pip install keras
六、open-cv3
根据自己的版本,去下面地址下载对应的包:
link
比如,下载了包:opencv3-3.1.0-py36_0.tar.bz2
直接使用conda命令安装:
conda install opencv3-3.1.0-py36_0.tar.bz2
在ipython交互下,import cv2不报错,即安装成功。
更新numpy
conda install -f numpy