unbutun18.04+RTX2070+cuda+cudnn安装+anaconda+opencv

unbutun18.04+RTX2070+cuda+cudnn安装+anaconda+opencv
一、安装anaconda3

本人下载的版本:Anaconda3-2019.03-Linux-x86_64.sh
anaconda3官网下载地址: link.
anaconda3清华源下载地址link

输入下面命令进行安装:
bash Anaconda3-2019.03-Linux-x86_64.sh
按回车进入安装说明,最后输入yes

设置文件的安装位置按回车选择默认的安装位置

设置是否加入环境变了,本人选择yes

执行运行 conda install numpy测试一下吧,看看有没有问题

解决spyder运行失败问题,运行下面命令:

conda install pyopengl

建立一个 conda 计算环境名字叫tensorflow: 在终端输入一下命令即可,我这里是Python3.6版本

conda create -n tensorflow python=3.6

激活tensorflow环境,继续在终端输入一下命令:

source activate tensorflow

在tensorflow环境下,在终端用conda安装spyder。输入一下命令:

conda install spyder

然后会看见安装目录位于我们之前建好的tensorflow环境下,也会看到安装spyder会安装许多依赖包,然后输入y,大概10分钟后就安装好了。这时我们在终端输入spyder打开spyder,在IPython console下输入import tensorflow,如果没有报错则表明安装成功了。

注意每次要使用tensorflow时,一定要先在终端激活tensorflow环境:source activate tensorflow然后输入spyder打开spyder,这里的这个spyder是tensorflow环境下的spyder,不使用tensorflow时使用以下命令关掉tensorflow环境source deactivate

二、安装cuda 10.1
由于ubuntu18.04版本的gcc是7.3版本,但是编译cuda需要的版本要低于6.0,因此需要对gcc进行降级
在这里插入图片描述安装gcc4.8:

sudo apt-get install gcc-4.8
sudo apt-get install g++-4.8

将gcc4.8与gcc7.3设置到gcc的候选中,之后就可以切换gcc版本.

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 100
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 100

执行如下命令进行切换:

sudo update-alternatives --config gcc
sudo update-alternatives --config g++

根据自己的实际需要选择相应的版本好:
在这里插入图片描述cuda与cudnn版本的选择:

之前就一直在纠结一个问题安装cuda与cudnn的版本要怎么选,怎么不同的人选择的版本都不一样,要怎么搭配,后来终于搞清楚了,要确定cuda的版本,要先知道cudnn的版本,我们先去官网看看cudnn有那些版本可以下载link,看看下面的这幅图片,官方已经给出了cuda与cudnn搭配的建议。
在这里插入图片描述安装依赖的相关的包:

sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
或sudo apt-get install python-pip python-dev
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

开始安装

sudo sh cuda_10.1.105_418.39_linux.run

需要注意的是,之前已经安装过显卡驱动程序,故在提问是否安装显卡驱动时选择no,其他 选择默认路径或者yes即可。

修改环境变量:

sudo gedit .bashrc
export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

更新:
source .bashrc

执行nvcc -V看看是否安装成功.
在这里插入图片描述测试

cd /usr/local/cuda-10.1/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
cd ../bandwidthTest
sudo make
./bandwidthTest

三、安装cudnn
下载链接link下载 cuDNN Runtime Library for Ubuntu18.04 (Deb)
在这里插入图片描述安装deb安装包

sudo dpkg -i libcudnn7_7.5.0.56-1+cuda10.1_amd64.deb

拷贝测试demo:

cp /usr/src/cudnn_samples_v7/ ~ -raf    //拷贝到home目录
 cd ~/cudnn_samples_v7/mnistCUDNN        //进入相关测试项目
 make clean && make                     //编译
./mnistCUDNN                             //运行测试
sudo dpkg --contents libcudnn7_7.5.0.56-1+cuda10.1_  //用于查看安装包安装的信息

四、安装tensorflow
我们采用pip的方式安装tensorflow,在安装之前先更新一下pip的源:

升级pip到最新版本

sudo apt-get install python-pip python-dev 

安装命令:

pip install tensorflow-gpu==1.7

卸载命令

sudo pip uninstall tensorflow-gpu

五、添加keras的安装

pip install keras

六、open-cv3
根据自己的版本,去下面地址下载对应的包:
link
比如,下载了包:opencv3-3.1.0-py36_0.tar.bz2
直接使用conda命令安装:

conda install opencv3-3.1.0-py36_0.tar.bz2

在ipython交互下,import cv2不报错,即安装成功。

更新numpy

conda install  -f  numpy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值