重排序模型计算两个文本的分数

使用BGE Reranker模型计算文本对相关性:

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# 加载预训练模型与分词器(使用BAAI官方发布的reranker模型)
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model.eval()  # 设置为推理模式

def calculate_rerank_score(query, documents):
    """
    计算查询与多个文档的相关性分数
    :param query: 查询文本,如:"熊猫是什么"
    :param documents: 候选文档列表,如:["熊猫是熊科动物", "企鹅生活在南极"]
    :return: 包含分数和文档的排序列表
    """
    # 构造文本对(格式:[[query, doc1], [query, doc2], ...])
    pairs = [[query, doc] for doc in documents]
    
    with torch.no_grad():
        # 批量编码文本对
        inputs = tokenizer(
            pairs,
            padding=True,
            truncation=True,
            return_tensors='pt',
            max_length=512  
        )
        
        # 获取模型输出
        outputs = model(**inputs)
        scores = torch.sigmoid(outputs.logits).squeeze().tolist()  # 将logits转换为0-1概率值

    # 组合结果并按分数降序排序
    sorted_results = sorted(zip(documents, scores), key=lambda x: x[1], reverse=True)
    return sorted_results

# 使用示例
if __name__ == "__main__":
    query = "What is the capital of France?"
    documents = [
        "Paris is the most populous city in France",
        "Lyon is a major city in eastern France",
        "The Eiffel Tower is located in Paris"
    ]
    
    results = calculate_rerank_score(query, documents)
    
    # 打印结果
    print("Query:", query)
    for rank, (doc, score) in enumerate(results, 1):
        print(f"Rank {rank} (Score: {score:.4f}): {doc}")
  • 输出示例:
Query: What is the capital of France?
Rank 1 (Score: 0.9872): Paris is the most populous city in France
Rank 2 (Score: 0.8531): The Eiffel Tower is located in Paris
Rank 3 (Score: 0.1023): Lyon is a major city in eastern France
  • 关键实现细节说明:
    • 模型选择:使用BAAI/bge-reranker-large模型,该模型专门针对查询-文档相关性任务训练,支持中英文混合场景

    • 输入构造:将查询与每个文档组成二维列表,形成(query, doc)对,这种交叉编码方式能捕捉细粒度语义交互

    • 分数计算:通过sigmoid函数将logits转换为0-1的概率值,分数越高表示相关性越强,0.5为判定阈值

    • 批处理优化:通过padding=True和return_tensors='pt’实现批量推理,提升计算效率

智慧医药系统(smart-medicine)是一款采用SpringBoot架构构建的Java Web应用程序。其界面设计简洁而富有现代感,核心特色在于融合了当前前沿的生成式人工智能技术——具体接入了阿里云的通义千问大型语言模型,以此实现智能医疗咨询功能,从而增强系统的技术先进性与实用价值。该系统主要定位为医学知识查询与辅助学习平台,整体功能结构清晰、易于掌握,既适合编程初学者进行技术学习,也可作为院校课程设计或毕业项目的参考实现。 中医舌诊作为传统医学的重要诊断手段,依据舌象的颜色、形状及苔质等特征来辨析生理状况与病理变化。近年来,随着计算科学的进步,人工智能技术逐步渗透到这一传统领域,形成了跨学科的研究与应用方向。所述的中医舌诊系统正是这一方向的实践产物,它运用AI算法对舌象进行自动化分析。系统以SpringBoot为基础框架,该框架依托Java语言,致力于简化Spring应用程序的初始化与开发流程,其突出优势在于能高效构建独立、可投入生产的应用,尤其契合微服务架构与云原生环境,大幅降低了开发者在配置方面的负担。 系统中整合的通义千问大语言模型属于生成式人工智能范畴,通过海量数据训练获得模拟人类语言的能力,可在限定领域内生成连贯文本,为用户提供近似专业医生的交互式咨询。该技术的引入有助于提升诊断过程的自动化水平与结果一致性。 在设计与体验层面,本系统强调逻辑明晰与操作简便,旨在降低用户的学习门槛,尤其适合中医知识的入门教学。整体交互模式接近百科全书式查询,功能模块精炼聚焦,因而非常适用于教育场景,例如学术项目展示或毕业设计答辩。通过直观的实践界面,使用者能够更深入地理解中医舌诊的理论与方法。 此外,系统界面遵循简约大气的设计原则,兼顾视觉美感与交互流畅性,以提升用户的专注度与使用意愿。结合AI的数据处理能力,系统可实现对舌象特征的快速提取与实时分析,这不仅为传统诊断方法增添了客观量化维度,也拓展了中医知识传播的途径。借助网络平台,该系统能够突破地域限制,使更多用户便捷地获取专业化的中医健康参考,从而推动传统医学在现代社会的应用与普及。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【掺铒光纤放大器(EDFA)模型】掺铒光纤放大器(EDFA)分析模型的模拟研究(Matlab代码实现)内容概要:本文介绍了掺铒光纤放大器(EDFA)分析模型的模拟研究,并提供了基于Matlab的代码实现方案。通过对EDFA的工作原理、增益特性、噪声系数等关键性能指标进行数学建模与仿真分析,帮助研究人员深入理解其在光通信系统中的作用机制。文档还列举了多个相关科研方向的技术支持内容,涵盖智能优化算法、路径规划、无人机应用、通信与信号处理、电力系统管理等多个领域,展示了Matlab在科学研究与工程仿真中的广泛应用能力。此外,文中附带网盘链接,便于获取完整的代码资源与开发工具包。; 适合人群:具备一定光学通信或电子信息背景,熟悉Matlab编程,从事科研或工程仿真的研究生、高校教师及技术研发人员。; 使用场景及目标:①用于光通信系统中EDFA性能的理论分析与仿真验证;②支持科研人员快速构建和测试EDFA模型,提升研究效率;③为教学实验、毕业设计及学术论文复现提供可靠的技术参考与代码基础。; 阅读建议:建议读者结合光通信基础知识,按照文档结构逐步运行并调试Matlab代码,重点关注模型参数设置与仿真结果分析,同时可利用提供的网盘资源拓展学习其他相关课题,深化对系统级仿真的理解。
<think>我们参考了用户提供的引用内容,特别是引用[1]中提到的重排序模型(Re-ranking Models)的概念,以及引用[2][3]中关于模型微调的方法。用户意图是了解如何使用相似文本对数据来微调一个重排序模型重排序模型通常用于信息检索系统中,在初步检索出一批候选结果后,对候选结果进行重新排序,以提升相关结果在顶部的概率。微调重排序模型通常需要相似文本对数据集,即查询(query)和与之相关的文档(positive document)以及不相关的文档(negative document)组成的对。 步骤概述: 1. 准备数据集:需要包含三元组(query, positive_doc, negative_doc)或至少是(query, positive_doc)和负采样的方式。 2. 选择预训练模型:通常使用双塔模型两个文本分别编码)或交叉编码器(将query和doc拼接在一起输入)。重排序模型由于需要高精度,常使用交叉编码器,但计算开销较大;而双塔模型适合大规模检索。 3. 定义损失函数:常用的有对比损失、三元组损失等。对于重排序,也可以使用交叉熵损失(将问题转化为二分类:相关/不相关)或排序损失(如RankNet、ListNet等)。 4. 微调模型:在准备好的数据集上训练模型。 5. 评估:使用NDCG、MAP等排序指标评估模型性能。 具体步骤: ### 1. 准备数据集 数据集应包含三元组(query, 正例文档, 负例文档)。例如,对于每个查询,正例文档是与查询高度相关的文档,负例文档可以是随机采样的不相关文档或困难负例(与查询相关但不够相关)。 示例数据集格式(可保存为CSV或JSON): ```csv query,positive_doc,negative_doc "查询文本1","相关文档1","不相关文档1" "查询文本2","相关文档2","不相关文档2" ... ``` 如果只有正例对(query, positive_doc),则可以采用负采样策略,即从其他查询的文档中随机选取作为负例。 ### 2. 选择模型架构 重排序模型常用两种架构: - **交叉编码器(Cross-Encoder)**:将query和document拼接成一个序列输入到Transformer模型中,输出一个相关性分数。这种模型效果通常更好,但计算开销大,不适合大规模候选集。 - **双塔模型(Bi-Encoder)**:分别对query和document进行编码,然后通过一个相似度函数(如余弦相似度、点积)计算分数计算效率高,适合大规模候选集。 根据引用[2]和[3]中提到的微调方法,我们可以选择预训练的Transformer模型(如BERT、RoBERTa)作为基础模型。 ### 3. 定义损失函数 常用的损失函数包括: - **对比损失(Contrastive Loss)**:拉近正例对的距离,拉远负例对的距离。 - **三元组损失(Triplet Loss)**:让正例对的距离小于负例对的距离至少一个边界值(margin)。 - **交叉熵损失(Cross-Entropy Loss)**:将问题视为二分类(相关/不相关),使用sigmoid激活函数输出概率。 对于重排序,还可以使用排序损失(如RankNet),它直接优化排序的指标。 ### 4. 微调模型 使用类似PyTorch或TensorFlow的框架进行微调。以下是一个使用PyTorch和Hugging Face Transformers库的示例代码: #### 示例:使用交叉编码器进行微调 假设我们使用三元组损失。 ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from torch.utils.data import Dataset, DataLoader # 定义数据集类 class TripletDataset(Dataset): def __init__(self, queries, positives, negatives, tokenizer, max_length=128): self.tokenizer = tokenizer self.max_length = max_length self.queries = queries self.positives = positives self.negatives = negatives def __len__(self): return len(self.queries) def __getitem__(self, idx): query = self.queries[idx] positive = self.positives[idx] negative = self.negatives[idx] return query, positive, negative def collate_fn(self, batch): queries, positives, negatives = zip(*batch) # 将query和positive拼接,query和negative拼接 texts_pos = [f"{q} [SEP] {p}" for q, p in zip(queries, positives)] texts_neg = [f"{q} [SEP] {n}" for q, n in zip(queries, negatives)] # 编码正例对和负例对 encodings_pos = self.tokenizer(texts_pos, padding=True, truncation=True, max_length=self.max_length, return_tensors="pt") encodings_neg = self.tokenizer(texts_neg, padding=True, truncation=True, max_length=self.max_length, return_tensors="pt") return encodings_pos, encodings_neg # 加载预训练模型和tokenizer model_name = "bert-base-chinese" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=1) # 输出一个分数 # 假设我们有数据 queries = ["查询1", "查询2"] positives = ["相关文档1", "相关文档2"] negatives = ["不相关文档1", "不相关文档2"] dataset = TripletDataset(queries, positives, negatives, tokenizer) dataloader = DataLoader(dataset, batch_size=2, collate_fn=dataset.collate_fn) # 定义优化器和损失函数 optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) criterion = torch.nn.MarginRankingLoss(margin=1.0) # 三元组损失的一种形式 # 训练循环 model.train() for epoch in range(3): # 假设3个epoch for batch in dataloader: encodings_pos, encodings_neg = batch # 正例对得分 outputs_pos = model(**encodings_pos).logits.squeeze() # 负例对得分 outputs_neg = model(**encodings_neg).logits.squeeze() # 我们希望正例对的分数高于负例对(至少margin) loss = criterion(outputs_pos, outputs_neg, torch.ones_like(outputs_pos)) # 标签为1,表示正例对应该比负例对得分高 loss.backward() optimizer.step() optimizer.zero_grad() print(f"Loss: {loss.item()}") ``` ### 5. 评估模型 使用排序指标如NDCG、MRR、MAP等评估模型在验证集上的性能。 ## 注意事项 - **数据质量**:确保正例文档与查询高度相关,负例文档可以包含随机负例和困难负例(通过初步检索模型获取),以提高模型区分能力。 - **模型选择**:如果对延迟要求高,可以选择双塔模型;如果追求精度,选择交叉编码器。 - **超参数调整**:如学习率、批次大小、训练轮数等,参考引用[2]中的建议。 - **负采样策略**:困难负例挖掘可以提升模型性能。 以上步骤展示了如何使用相似文本对数据集微调重排序模型。具体实现时,可以根据实际场景调整模型架构、损失函数和训练策略。 §§相关问题§§ 1. 重排序模型与检索模型有什么区别和联系? 2. 如何为微调重排序模型准备有效的负样本? 3. 除了三元组损失,还有哪些损失函数适合重排序模型? 4. 在资源有限的情况下,如何设计高效的重排序模型?</think>### 如何使用相似文本对数据集微调重排序模型 重排序模型(Re-ranking Models)是信息检索系统的关键组件,用于对初步检索结果进行精细化排序。以下是使用相似文本对数据集微调重排序模型的完整流程: --- #### 1. **数据准备** - **构建三元组数据集**: 创建格式为 `(query, 正例文档, 负例文档)` 的三元组,例如: ``` ("机器学习定义", "机器学习是人工智能的子领域", "统计学是数据分析的基础") ``` - **正例**:与查询强相关的文本(如点击数据、人工标注) - **负例**:随机采样或困难负例(与查询相关但不够精准) - **数据预处理**: - 统一文本长度(如截断/填充至128字符) - 生成注意力掩码(标记有效文本区域) - 参考:[文本匹配数据集构建方法](https://github.com/shibing624/text2vec/blob/master/examples/data/build_zh_nli_dataset.py)[^4] --- #### 2. **模型选择** - **基础模型**: 选用预训练语言模型作为编码器: - 双塔结构:如 `BERT` 分别编码查询和文档(高效但精度较低) - 交叉编码器:如 `RoBERTa` 将查询和文档拼接输入(精度高但计算量大) - **微调方法**: 根据资源选择: - **特征提取**:冻结预训练层,仅训练顶层分类器(资源少时适用) - **全参数微调**:解冻所有层进行端到端训练(需更多资源)[^3] --- #### 3. **损失函数设计** - **对比学习损失**:最小化正例对距离,最大化负例对距离 ```python # PyTorch 示例 loss = max(0, margin - cos_sim(q, pos) + cos_sim(q, neg)) ``` - **排序损失**(如 RankNet): $$L = -\log \frac{e^{s_{pos}}}{e^{s_{pos}} + e^{s_{neg}}}$$ 其中 $s_{pos}$/$s_{neg}$ 为正/负例得分 --- #### 4. **训练流程** ```python from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir="./results", learning_rate=2e-5, # 关键超参数 per_device_train_batch_size=16, num_train_epochs=3, ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset, compute_metrics=compute_ndcg # 使用NDCG评估排序质量 ) trainer.train() ``` **关键注意事项**: - 学习率不宜过大(避免震荡)或过小(收敛慢)[^2] - 批次大小影响梯度稳定性(建议16-64) - 每轮训练后进行错误分析,修正数据偏差[^2] --- #### 5. **性能优化技巧** - **困难负例挖掘**: 用初步模型筛选高迷惑性负例 - **知识蒸馏**: 用大型交叉编码器指导轻量双塔模型 - **混合精度训练**: 减少显存占用(`fp16=True`) - **重排序集成**: 融合多个模型的预测结果提升鲁棒性 --- #### 6. **评估指标** | 指标 | 说明 | 目标值 | |---|---|---| | NDCG@10 | 前10位排序质量 | >0.85 | | MAP | 平均检索精度 | >0.8 | | MRR | 首个相关结果位置 | >0.9 | > 最终模型应像优秀图书管理员,在初步检索后精准筛选最权威信息[^1] --- ### 相关问题 1. 如何选择重排序模型的结构(双塔 vs 交叉编码器)? 2. 哪些公开的中文文本匹配数据集适合重排序任务? 3. 如何处理重排序模型中的长尾查询(低频查询)? 4. 如何在不标注数据的情况下生成有效的训练三元组? 5. 重排序模型在推荐系统中的应用有哪些特殊挑战? [^1]: 重排序模型确保用户获得最权威信息 [^2]: 模型微调需注意超参数调整和错误分析 [^3]: 微调方法需根据资源选择特征提取或全参数更新 [^4]: 文本匹配数据集构建方法参考
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

为啥全要学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值