摘要: 交通标志智能检测与识别系统是一种利用计算机视觉和深度学习技术来自动检测并识别道路上各种交通标志的智能系统。这类系统的开发旨在提高驾驶安全性和效率,特别是在自动驾驶汽车的发展中起到了至关重要的作用。目前,基于深度学习的目标检测算法虽然在常见目标检测识别效果上不断改进,但在交通标志这类特定目标的性能上仍有提升空间。本项目基于深度学习框架,通过9738张图片,训练了一个进行交通标志智能检测与识别的目标检测模型,可检测45种不同交通标志。并基于此模型开发了一款带UI界面的交通标志智能检测与识别系统,可用于实时检测场景中的不同交通标志,更方便进行功能的展示。该系统是基于python3.8.10与pyside6开发的,支持图片、视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
前言:
交通标志智能检测与识别系统(TSR, Traffic Sign Recognition System)是现代智能交通系统的重要组成部分。该系统的主要功能在于及时提醒驾驶员注意前方的交通标志,确保驾驶员能够严格遵守交通法规,从而显著提升行车安全性。
智能交通系统(ITS): 该系统作为智能交通系统的重要组成部分,能够实时监控交通标志的状态,快速发现损坏或遮挡的标志,确保道路信息的畅通无阻。
自动驾驶技术: 在自动驾驶领域,准确的交通标志识别系统是自动驾驶汽车感知环境的关键,帮助车辆理解和遵守交通规则,使自动驾驶更加安全可靠。
交通管理: 交通标志识别技术可以应用于交通流量的优化控制、道路状况的监测和预警等功能,减少交通事故,降低能源消耗,减轻环境污染。
导航系统: 导航软件可以利用交通标志识别信息提供更加精准的路线指引,帮助驾驶者做出正确的驾驶决策,避免交通事故。
驾驶辅助系统: 该系统可以提醒驾驶者即将到来的交通条件变化,增强驾驶体验,提升驾驶安全性。
交通数据采集与分析: 通过对交通标志的识别和分析,可以了解不同路段的交通规则、交通流量分布等情况,为交通规划和管理提供科学依据。
城市交通大脑: 在一些城市中,交通标志识别系统与城市交通大脑相结合,实现对城市交通的全面监控和管理,提高交通系统的运行效率。
公共交通管理: 智能交通系统可以通过实时监测公共交通工具的运行状态和乘客流量,智能调度公共交通资源,提高公共交通的运行效率和乘客满意度。
通过搜集不同种类的交通标志的相关数据图片,根据目标检测技术,基于python与pyside6开发了一款界面简洁的交通标志智能检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存。
工程检测结果界面如下: