《最优化理论》:运输问题(一)求最小运费【西北角法、最小元素法、伏格尔法】

【运筹学】-运输问题(一)(运输问题模型)

西北角法:在单位运价表中,每次从西北角位置选择元素,不考虑单位运价
最小元素法:在单位运价表中,每次选择运价最小的元素
伏格尔法:每次重新计算未被划去的行列的最小元素和次小元素的差额,选择最大差额对应列的最小元素对应的行列

例题

在这里插入图片描述

求解方法

在这里插入图片描述

步骤一:求初始基本可行解

西北角法求解

(1)确定西北角
在这里插入图片描述
(2)标识基变量:确定最大运输量(可接受量) bj 和可提供量 ai
在这里插入图片描述
在这里插入图片描述
(3)确定西北角
在这里插入图片描述

(4)标识基变量:确定最大运输量(可接受量) bj 和可提供量 ai
在这里插入图片描述
在这里插入图片描述
(5)确定西北角
在这里插入图片描述
(6)标识基变量:确定最大运输量(可接受量) bj 和可提供量 ai
在这里插入图片描述
(7)确定西北角
在这里插入图片描述
(8)确定运输表
在这里插入图片描述
(9)确定西北角
在这里插入图片描述
(10)确定运输表
在这里插入图片描述
(11)确定西北角
在这里插入图片描述
(12)确定运输表
在这里插入图片描述
到此,找到了6个基变量,而我们需要的基变量也正是m+n-1=3+4-1=6个,说明我们找到了初始可行解<

格尔法(Vogel's Approximation Method, VAM)是种用于运输问题的启发式算运输问题是在满足供需条件的前提下,将定量的货物从多个供应地运输到多个需地,以最小运输成本的问题格尔法的目的是找到个初始的可行解,为后续的优化方如单纯形提供个良好的起点。 格尔法的基本步骤如下: 1. 对于每对供应地和需地,计算它们之间的惩罚成本,即如果从该供应地到该需地不使用最优路线时可能多支付的成本。 2. 找到所有惩罚成本中最大值对应的供应地和需地对,选择这对中的最小成本作为可能的运输量。 3. 如果有多条路线都有相同的最小成本,则任选条作为运输路线;如果有多个相同最大惩罚成本的供应地或需地对,则选择运输成本最小对。 4. 更新供需量,从相应的供应地减去运输量,增加到相应的需地。 5. 重复步骤1到4,直到所有的供应地和需地的供需量都恰好平衡,此时得到个初始可行解。 在数学建模软件中,例如Lingo、MATLAB或Python等,可以通过编写相应的程序代码来实现格尔法的算。以下是个简单的伪代码示例,用于说明如何实现格尔法的基本逻辑: ``` 初始化供应量和需量 初始化运输成本矩阵 while 未找到初始可行解: 计算每对供应地和需地的惩罚成本 找到最大的惩罚成本对应的供应地和需地对 在该对中找到最小运输成本,设为x_ij 更新供需量和运输矩阵 将x_ij加入到运输计划中 输出初始可行解 ``` 请注意,这只是个逻辑框架,具体实现时需要考虑各种约束条件和程序设计的细节。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值