广义相对论(General Relativity, GR),是一种用于描述引力的理论(引力理论),其数学基础为黎曼几何,但广义相对论并不等价于黎曼几何
爱因斯坦的广义相对论有三个前提,分别是:
1、非欧几何
2、牛顿引力
3、相对性原理
以上三个前提都是广义相对论的基础,在广义相对论中具有不可或缺的地位
1、非欧几何
欧氏几何: 欧几里得几何,是公理化体系。公理化体系是从逻辑推理所推导出的体系(换个词来说:假设)
欧氏几何的五条假设(特别简单且无需证明):
1、任意两点之间可以连成一条直线
2、任何一个线段都可以无限延长变成一条直线
3、给定一个线段和一个固定点,则总是可以以点为圆心,线段为半径作一个圆
4、所有的直角都相等
5、如果两条直线与第三条直线相交,且相交的两个内角加起来小于180
∘
^\circ
∘,则两条直线必然相交(等价于三角形内角和=180
∘
^\circ
∘),如下图所示(第五条假设曾经被认为是多余的,但仍然是必不可少的):

第五公设问题
早期,数学家高斯完全建立了一套新的几何体系,在这个几何体系中,第五条公设不成立,属于非欧几何
Gauss,Boylay,Lobachski建立了一个典型的非欧几何体系,名为“二维负常曲率空间”(马鞍面)。在此体系中,第五条公设不成立,而前四条则成立(在马鞍面上画一个三角形,其内角和小于180 ∘ ^\circ ∘)。此外,球面名为"二维正常曲率空间",在球面上画一个三角形,其内角和大于 18 0 ∘ 180^\circ 180∘
球面几何或马鞍面几何都属于非欧几何。判断一个几何是否属于欧氏几何,只需在面上画一个三角形,判断其内角和是否为 18 0 ∘ 180^\circ 180∘即可
以上是二维的非欧几何
解析几何
笛卡尔发展解析几何
二维空间中两点间的距离 ( x 1 , x 2 ) , ( y 1 , y 2 ) → d ( x , y ) = [ ( x 1 − y 1 ) + ( x 2 − y 2 ) ] 2 (x_1,\ x_2),(y_1,\ y_2) \rightarrow d(x,\ y)=[(x_1-y_1) + (x_2-y_2)]^2 (x1, x2),(y1, y2)→d(x, y)=[(x1−y1)+(x2−y2)]2
由此定义可以推导出欧氏几何的所有公理,该定义给出的几何就是欧氏几何
在非欧空间中,也可以定义两点距离。例如,“二维负常曲率空间”,可以定义为:每个点用实数对 ( x 1 , x 2 ) (x_1,\ x_2) (x1, x2),且要求 x 1 2 + x 2 2 < 1 x_1^2+x_2^2 < 1 x12+x22<1,两点 ( x 1 , x 2 ) , ( y 1 , y 2 ) (x_1,\ x_2),\ (y_1,\ y_2) (x1, x2), (y1, y2)间距离为:
cosh [ d ( x , y ) a ] ≡ 1 − x 1 y 1 − x 2 y 2 [ ( 1 − x 1 2 − x 2 2 ) ( 1 − y 1 2 − y 2 2 ) ] 1 / 2 \cosh\left[\dfrac{d(x,\ y)}{a}\right]\equiv \dfrac{1-x_1y_1-x_2y_2}{[(1-x_1^2-x_2^2)(1-y_1^2-y_2^2)]^{1/2}} cosh[ad(x, y)]≡[(1−x12−x22)(1−y12−y22)]1/21−x1y1−x2y2
其中, a a a为用于建立几何标度的基本长度
根据该定义发展出来的几何就是非欧几何
非欧几何的建立(高斯):
任一二维曲面具有的性质:
1、内在性质:曲面上的蚂蚁
2、外在性质:把曲面镶嵌在高维空间中,十一个约束条件
高斯认为:
1、前者更根本
2、任一曲面上的几何,完全由两点间距距离的定义
d
(
x
,
y
)
d(x,\ y)
d(x, y)来决定
3、理论上,两点间距离可以任意定义
Gauss的更重要的贡献:找到一类特殊的度规空间,这个度规空间:
1、足够宽泛,宽泛到足以描述日常中所有的二维曲面
2、足够狭窄,狭窄到可以发展出符合逻辑的几何学
高斯假设:在空间中任一足够小的区域内,能找到一个坐标系 ( ξ 1 , ξ 2 ) (\xi_1,\ \xi_2) (ξ1, ξ2),使得相邻两点 ( ξ 1 , ξ 2 ) (\xi_1,\ \xi_2) (ξ1, ξ2)和 ( ξ 1 + d ξ 1 , ξ 2 + d ξ 2 ) (\xi_1+d\xi_1,\ \xi_2+d\xi_2) (ξ1+dξ1, ξ2+dξ2)间距离满足关系: d s 2 = d ξ 1 2 + d ξ 2 2 ds^2=d\xi_1^2+d\xi_2^2 ds2=dξ12+dξ22(笛卡尔坐标,是局域欧氏的)
欧氏几何:
(
ξ
1
,
ξ
2
)
(\xi_1,\ \xi_2)
(ξ1, ξ2)足以描述整个空间
非欧几何:
(
ξ
1
,
ξ
2
)
(\xi_1,\ \xi_2)
(ξ1, ξ2)不足以描述整个空间,而且一般
(
ξ
1
,
ξ
2
)
(\xi_1,\ \xi_2)
(ξ1, ξ2)只能描述一点的邻域
以球面为例, ( x , y ) (x,\ y) (x, y)不能描述整个球面,但一般总能找到另外一个坐标系来描述整个曲面 ( x 1 , x 2 ) (x_1,\ x_2) (x1, x2)
在新坐标系下,两点间距离 ( x 1 , x 2 ) (x_1,\ x_2) (x1, x2), ( x 1 + d x 1 , x 2 + d x 2 ) (x_1+dx_1,\ x_2+dx_2) (x1+dx1, x2+dx2)怎样定义?
在一般的坐标系下, d s 2 = d ξ 1 2 + d ξ 2 2 ds^2=d\xi_1^2+d\xi_2^2 ds2=dξ12+dξ22,现在要变换坐标系 ( ξ 1 , ξ 2 ) → ( x 1 , x 2 ) (\xi_1,\ \xi_2)\rightarrow (x_1,\ x_2) (ξ1, ξ2)→(x1, x2):
d s 2 = d ξ 1 2 + d ξ 2 2 = g 11 d x 1 2 + 2 g 12 d x 1 d x 2 + g 22 d x 2 2 ds^2=d\xi_1^2+d\xi_2^2=g_{11}dx_1^2+2g_{12}dx_1dx_2+g_{22}dx_2^2 ds2=dξ12+dξ22=g11dx12+2g12dx1dx2+g22dx22 (1)
其中:
g 11 = ( ∂ ξ 1 ∂ x 1 ) 2 + ( ∂ ξ 2 ∂ x 1 ) 2 g_{11}=\left(\dfrac{\partial\xi_1}{\partial x_1}\right)^2+\left(\dfrac{\partial\xi_2}{\partial x_1}\right)^2 g11=(∂x1∂ξ1)2+(∂x1∂ξ2)2
g 12 = ∂ ξ 1 ∂ x 1 ∂ ξ 1 ∂ x 2 + ∂ ξ 2 ∂ x 1 ∂ ξ 2 ∂ x 2 g_{12}=\dfrac{\partial\xi_1}{\partial x_1}\dfrac{\partial\xi_1}{\partial x_2}+\dfrac{\partial\xi_2}{\partial x_1}\dfrac{\partial\xi_2}{\partial x_2} g12=∂x1∂ξ1∂x2∂ξ1+∂x1∂ξ2∂x2∂ξ2
g 22 = ( ∂ ξ 1 ∂ x 2 ) 2 + ( ∂ ξ 2 ∂ x 2 ) 2 g_{22}=\left(\dfrac{\partial\xi_1}{\partial x_2}\right)^2+\left(\dfrac{\partial\xi_2}{\partial x_2}\right)^2 g22=(∂x2∂ξ1)2+(∂x2∂ξ2)2
作业1:证明上述等式(1)
d s 2 = g 11 d x 1 2 + 2 g 12 d x 1 d x 2 + g 22 d x 2 2 ds^2=g_{11}dx_1^2+2g_{12}dx_1dx_2+g_{22}dx_2^2 ds2=g11dx12+2g12dx1dx2+g22dx22
g i j g_{ij} gij即度规张量
说明:
1、度规 g i j g_{ij} gij与坐标系的选择有关
举例:欧氏空间中, ( x 1 , x 2 ) → d s 2 = d x 1 2 + d x 2 2 → g 11 = g 22 = 1 , g 12 = g 21 = 0 (x_1,\ x_2)\rightarrow ds^2=dx_1^2+dx_2^2\rightarrow g_{11}=g_{22}=1,\ g_{12}=g_{21}=0 (x1, x2)→ds2=dx12+dx22→g11=g22=1, g12=g21=0
极坐标中, ( r , θ ) → d s 2 = d r 2 + r 2 d θ 2 → g 11 = 1 , g 22 = r 2 , g 12 = g 21 = 0 (r,\ \theta)\rightarrow ds^2=dr^2+r^2d\theta^2\rightarrow g_{11}=1,\ g_{22}=r^2,\ g_{12}=g_{21}=0 (r, θ)→ds2=dr2+r2dθ2→g11=1, g22=r2, g12=g21=0
描述一个曲面,一般有无数种坐标系(坐标的定义很随意,没有任何限制),因此度规有无数个,从度规无法判断一个曲面是非欧的还是欧氏的(是不是只有能够表示为 g 11 = g 22 = 1 , g 12 = g 21 = 0 g_{11}=g_{22}=1,\ g_{12}=g_{21}=0 g11=g22=1, g12=g21=0这样的度规,才能叫做欧氏曲面?)
2、Gauss希望找到一个量,它足以描述曲面的性质,但又不依赖于坐标系的定义,此即高斯曲率(唯一的):
K = 1 2 g [ 2 ∂ 2 g 12 ∂ x 1 ∂ x 2 − ∂ 2 g 11 ∂ x 2 2 − ∂ 2 g 22 ∂ x 1 2 ] − g 22 4 g 2 [ ( ∂ g 11 ∂ x 1 ) ( 2 ∂ g 12 ∂ x 2 − ∂ g 22 ∂ x 1 ) − ( ∂ g 11 ∂ x 2 ) 2 ] + g 12 4 g 2 [ ( ∂ g 11 ∂ x 1 ) ( ∂ g 22 ∂ x 2 ) − 2 ( ∂ g 11 ∂ x 2 ) ( ∂ g 22 ∂ x 1 ) + ( 2 ∂ g 12 ∂ x 1 − ∂ g 11 ∂ x 2 ) ( 2 ∂ g 12 ∂ x 2 − ∂ g 22 ∂ x 1 ) ] − g 11 4 g 2 [ ( ∂ g 22 ∂ x 2 ) ( 2 ∂ g 12 ∂ x 1 − ∂ g 11 ∂ x 2 ) − ( ∂ g 22 ∂ x 1 ) 2 ] \begin{aligned}K=&\dfrac{1}{2g}\left[2\dfrac{\partial^2g_{12}}{\partial x_1\partial x_2}-\dfrac{\partial^2 g_{11}}{\partial x_2^2}-\dfrac{\partial^2 g_{22}}{\partial x_1^2}\right]\\ &-\dfrac{g_{22}}{4g^2}\left[\left(\dfrac{\partial g_{11}}{\partial x_1}\right)\left(2\dfrac{\partial g_{12}}{\partial x_2}-\dfrac{\partial g_{22}}{\partial x_1}\right)-\left(\dfrac{\partial g_{11}}{\partial x_2}\right)^2\right]\\ &+\dfrac{g_{12}}{4g^2}\left[\left(\dfrac{\partial g_{11}}{\partial x_1}\right)\left(\dfrac{\partial g_{22}}{\partial x_2}\right)-2\left(\dfrac{\partial g_{11}}{\partial x_2}\right)\left(\dfrac{\partial g_{22}}{\partial x_1}\right)+\right.\\ &\left.\left(2\dfrac{\partial g_{12}}{\partial x_1}-\dfrac{\partial g_{11}}{\partial x_2}\right)\left(2\dfrac{\partial g_{12}}{\partial x_2}-\dfrac{\partial g_{22}}{\partial x_1}\right)\right]\\ &-\dfrac{g_{11}}{4g^2}\left[\left(\dfrac{\partial g_{22}}{\partial x_2}\right)\left(2\dfrac{\partial g_{12}}{\partial x_1}-\dfrac{\partial g_{11}}{\partial x_2}\right)-\left(\dfrac{\partial g_{22}}{\partial x_1}\right)^2\right]\end{aligned} K=2g1[2∂x1∂x2∂2g12−∂x22∂2g11−∂x12∂2g22]−4g2g22[(∂x1∂g11)(2∂x2∂g12−∂x1∂g22)−(∂x2∂g11)2]+4g2g12[(∂x1∂g11)(∂x2∂g22)−2(∂x2∂g11)(∂x1∂g22)+(2∂x1∂g12−∂x2∂g11)(2∂x2∂g12−∂x1∂g22)]−4g2g11[(∂x2∂g22)(2∂x1∂g12−∂x2∂g11)−(∂x1∂g22)2]
其中, g = ∣ g i j ∣ = g 11 g 22 − g 12 2 g=|g_{ij}|=g_{11}g_{22}-g_{12}^2 g=∣gij∣=g11g22−g122是度规矩阵的行列式
作业2:对于球面 d s 2 = a 2 ( d θ 2 + sin 2 θ d φ 2 ) ds^2=a^2(d\theta^2+\sin^2\theta d\varphi^2) ds2=a2(dθ2+sin2θdφ2),计算 K = ? K=? K=?(其中, a a a为球半径)
球面的 K = 1 a 2 K=\dfrac{1}{a^2} K=a21,是二维正常曲率空间。而马鞍面的 K = − 1 a 2 K=-\dfrac{1}{a^2} K=−a21,是二维负常曲率空间。对于欧氏空间, K = 0 K=0 K=0
黎曼将这一套发展到了高维——黎曼几何
2、牛顿力学
万有引力:
F
=
G
M
m
r
2
F=G\dfrac{Mm}{r^2}
F=Gr2Mm
1、隐含着等效原理
2、隐含着平方反比率
以上内容记录于2021-9-14
惯性质量 m i m_i mi: F → = m i a → \overrightarrow F=m_i \overrightarrow a F=mia
引力质量 m g m_g mg: F → = G M g m g r 2 r ^ = m g g i → \overrightarrow F = G\dfrac{M_gm_g}{r^2}\hat r = m_g \overrightarrow {g_i} F=Gr2Mgmgr^=mggi
以上两者的意义完全不同
几千年来,人们不断地通过做实验的方式,来判断不同材质、质量、大小、温度的物体的 a → = ( m g m i ) g → \overrightarrow a = \left(\dfrac{m_g}{m_i}\right)\overrightarrow g a=(mimg)g是否一致。其结果为,当前的实验在极高的精度下证明这个值是一致的
在发现了水星近日点的进动后,开始认为平方反比率有问题,后来这一现象被广义相对论解释
牛顿引力非协变,不满足洛伦兹变换,因此爱因斯坦放弃了牛顿力学
3、相对性原理
惯性系
在涉及加速度的变换的情况下,原有的质点运动方程会发生改变。例如,在多质点动力学系统中,质点的运动方程为:
m N d 2 x N d t 2 = G ∑ M m N m M ( x → M − x → N ) ∣ x → M − x → N ∣ 3 m_N\dfrac{d^2x_N}{dt^2}=G\sum\limits_M\dfrac{m_Nm_M(\overrightarrow x_M-\overrightarrow x_N )}{|\overrightarrow x_M-\overrightarrow x_N|^3} mNdt2d2xN=GM∑∣xM−xN∣3mNmM(xM−xN)
现在对这个系统进行如下的坐标变换:
{ x → ′ = R x → + v → t + d → t ′ = t + τ \left\{\begin{aligned}{\overrightarrow x'}&=R\overrightarrow x+\overrightarrow v t+\overrightarrow d\\ t'&=t+\tau\end{aligned}\right. ⎩⎨⎧x′t′=Rx+vt+d=t+τ
将变换后的坐标代入到原有的运动方程中后,方程的形式并不会发生变化(而有些变换则会使质点运动方程发生改变),对于这样的参考系,牛顿称之为惯性系
惯性力
牛顿在研究运动时使用了“绝对空间”这一概念,认为惯性力是只有相对于绝对空间加速才会产生的;而马赫则认为所有的运动都是相对的,惯性力来自相对于全宇宙物质的加速
一开始,爱因斯坦认为自己的广义相对论满足马赫提出的原理。但后人的深入研究却表明,广义相对论并非与马赫原理一致
狭义相对论中,伽利略变换变成了洛伦兹变换,这仍然没有摆脱惯性系。而在广义相对论中,则是彻底摆脱了惯性系。在此理论中,物理定律在所有参考系中都成立,物理方程在所有参考系中保持不变
4、广义相对论(GR)的应用领域
GR应用的领域非常有限。但在宇宙学中,GR效应非常强,以至于无法使用牛顿引力去研究
牛顿理论对球对称的物体引起的引力场给出的公式为:
F = G M m r 2 F=G\dfrac{Mm}{r^2} F=Gr2Mm
GR与牛顿力学的差别仅有一个 O ( R g / R ) O(R_g/R) O(Rg/R)的量级。其中 R R R为球半径, R g R_g Rg为引力半径,定义为:
R g ≡ 2 G m c 2 R_g\equiv \dfrac{2Gm}{c^2} Rg≡c22Gm
无论是地球还是太阳,引力半径与球半径的比值都非常地小,以至于这一项可以被忽略不计。但对于致密天体而言,这个项将会达到不可忽略的地步,这便是GR的应用领域之一
作业:地球质量为 m = 5.977 × 1 0 24 m=5.977\times 10^{24} m=5.977×1024,太阳质量为 m = 1.989 × 1 0 30 m=1.989\times 10^{30} m=1.989×1030,求他们的引力半径
自然单位制
为了方便后续讨论,将会采取 ℏ = c = k B = 1 \hbar=c=k_B=1 ℏ=c=kB=1的记法(Planck常数,光速和玻尔兹曼常数),这种记法的主要作用是简化记号。在落实到具体数值时,需要通过量纲分析补上相应的常数
在简化记号后,有如下的量纲关系:
1、速度无量纲
2、
[
L
]
=
[
T
]
[L]=[T]
[L]=[T]
3、
[
E
]
=
[
f
r
e
q
u
e
n
c
y
]
=
[
L
]
−
1
=
[
T
]
−
1
[E]=[frequency]=[L]^{-1}=[T]^{-1}
[E]=[frequency]=[L]−1=[T]−1
4、
[
E
]
=
[
M
]
=
[
T
e
m
p
e
r
a
t
u
r
e
]
[E]=[M]=[Temperature]
[E]=[M]=[Temperature]
以上内容记录于2021-9-17
本章参考:Weinberg,Gravitation and Cosmology:Principles and Applications of the General Theory of Relativity