恒星结构和演化-学习记录2-第三章-物态方程1

第三章:物态方程

  在统计力学中,平衡体系,单位相空间体积内的粒子数由下述分布表示:
n ( p ) = 1 h 3 g j exp ⁡ { [ ϵ j ( p ⃗ ) − μ ] / k T } ∓ 1 n(p)=\frac{1}{h^3}\frac{g_j}{\exp\{[\epsilon_j(\vec p)-\mu]/kT\}\mp 1} n(p)=h31exp{[ϵj(p )μ]/kT}1gj
  其中,当粒子为玻色子时,符号取负;粒子为费米子时,符号取正。 g j g_j gj为能级简并度, ϵ ( p ⃗ ) \epsilon(\vec p) ϵ(p )为粒子动能, μ = ( ∂ E ∂ N ) S ,   V \mu=\left(\dfrac{\partial E}{\partial N}\right)_{S,\ V} μ=(NE)S, V为化学势,是在不对外做功和熵不变时,每增加一个粒子的能量

物态方程

粒子数密度

  由粒子分布函数,可以积分得到粒子数密度(积分结果是单位体积内的粒子数):
n = ∫ 0 ∞ n ( p ) 4 π p 2 d p n=\int^\infty_0 n(p)4\pi p^2 dp n=0n(p)4πp2dp
  积分后得到 n = n ( μ ,   T ) n=n(\mu,\ T) n=n(μ, T),或者写作 μ = μ ( n ,   T ) \mu=\mu(n,\ T) μ=μ(n, T),因此密度为 ρ = n m \rho=nm ρ=nm

压强

  而对于压强:
P = ∭ n ( p ) v 2 p cos ⁡ 2 i p 2 d Ω d p = 1 3 ∫ 0 ∞ n ( p ) v p 4 π p 2 d p \begin{aligned} P&=\iiint n(p)v2p\cos^2 i p^2 d\Omega dp\\ &=\frac{1}{3}\int^\infty_0 n(p)vp4\pi p^2 dp \end{aligned} P=n(p)v2pcos2ip2dΩdp=310n(p)vp4πp2dp
  右侧第一行是对于任意方向的动量进行的积分,第二行则是只对一个特定的方向进行的积分

  积分后的 P = P ( μ ,   T ) P=P(\mu,\ T) P=P(μ, T),如果将 μ \mu μ ρ \rho ρ来表示,则 P = P ( ρ ,   T ) P=P(\rho,\ T) P=P(ρ, T),是熟悉的物态方程

  粒子的能量与动量的关系为:
ϵ ( p ) = ( p 2 c 2 + m 2 c 4 ) 1 / 2 − m c 2 \epsilon(p)=(p^2 c^2+m^2 c^4)^{1/2}-mc^2 ϵ(p)=(p2c2+m2c4)1/2mc2
  速度与能量的关系为:
v = d ϵ d p v=\frac{d\epsilon}{dp} v=dpdϵ

内能密度

  内能密度 u u u为:
u = ∫ 0 ∞ n ( p ) ϵ ( p ) 4 π p 2 d p u=\int^\infty_0 n(p)\epsilon(p)4\pi p^2 dp u=0n(p)ϵ(p)4πp2dp
  对于理想气体而言,在非相对论极限下, ϵ ( p ) = p 2 2 m \epsilon(p)=\dfrac{p^2}{2m} ϵ(p)=2mp2,而在相对论极限下, ϵ ( p ) = p c \epsilon(p)=pc ϵ(p)=pc

  此积分结果的物理意义:单位体积的内能。积分后,内能 u = u ( n ,   T ) = u ( ρ ,   T ) u=u(n,\ T)=u(\rho,\ T) u=u(n, T)=u(ρ, T)

  而如果是对于非理想气体而言,还需要考虑内部能级的贡献

  对于其他的热力学量,可以通过热力学关系给出

热平衡辐射场

压强、内能与熵

  辐射场实际是光子场

  光子自旋为1,但质量为0,因此就只有两个偏振态,简并度 g = 2 g=2 g=2,化学势 μ = 0 \mu=0 μ=0(因为光子数不守恒),能量 ϵ = p c \epsilon=pc ϵ=pc(速度为光速),将这些值代入到前面的 n ( p ) n(p) n(p)中后,得到:
n ( p ) = 2 h 3 1 e p c / k T − 1 n(p)=\frac{2}{h^3}\frac{1}{e^{pc/kT}-1} n(p)=h32epc/kT11
  再根据前面的 P P P u u u的公式,积分得到:
P = 8 π 5 15 k 4 c 3 h 3 T 4 3 = 1 3 a T 4 u = a T 4 \begin{aligned} &P=\frac{8\pi^5}{15}\frac{k^4}{c^3 h^3}\frac{T^4}{3}=\frac{1}{3}aT^4\\ &u=aT^4 \end{aligned} P=158π5c3h3k43T4=31aT4u=aT4
  其中, a = 8 π 5 15 k 4 c 3 h 3 = 7.566 × 1 0 − 15 e r g   c m − 3   K − 4 a=\dfrac{8\pi^5}{15}\dfrac{k^4}{c^3h^3}=7.566\times 10^{-15}erg\ cm^{-3}\ K^{-4} a=158π5c3h3k4=7.566×1015erg cm3 K4

  由积分得到的 P P P u u u,可以将它们之间的关系写作:
P = ( γ − 1 ) u P=(\gamma-1)u P=(γ1)u
  其中, γ = 4 3 \gamma=\dfrac{4}{3} γ=34

  通过热力学关系,还可以给出辐射场的熵:
T d S r = d U + P d V T d S r = d ( a T 4 V ) + 1 3 a T 4 d V d S r = 4 3 a T 3 d V + V d ( 4 3 a T 3 ) S r = 4 3 a T 3 V \begin{aligned} TdS_r&=dU+PdV\\ TdS_r&=d(aT^4 V)+\frac{1}{3}aT^4 dV\\ dS_r&=\frac{4}{3}aT^3dV+Vd\left(\frac{4}{3}aT^3\right)\\ S_r&=\frac{4}{3}aT^3V \end{aligned} TdSrTdSrdSrSr=dU+PdV=d(aT4V)+31aT4dV=34aT3dV+Vd(34aT3)=34aT3V
  因为光子的化学势 μ = 0 \mu=0 μ=0,所以上述的积分常数为0(???????????????)

黑体辐射强度

  根据定义,单位时间、单位面积、单位立体角、单位频率间隔的黑体的辐射强度为:
I ν d t d A d Ω d ν = h ν n ( p ) p 2 d p d Ω c d t d A I_\nu dtdAd\Omega d\nu = h\nu n(p)p^2dpd\Omega cdtdA IνdtdAdΩdν=hνn(p)p2dpdΩcdtdA
  (为什么又有单位面积 d A dA dA,又有单位立体角 d Ω d\Omega dΩ?这不是矛盾了吗?还是说这是在相空间里面的,所以才会同时出现这两个?)——不是在相空间才会同时出现两个。这两个都是在正常三维空间里面的, d A dA dA是接收的面积, d Ω d\Omega dΩ是源在观测处看来的立体角大小

  由此得到:
I ν = c h ν n p p 2 d p d ν = 2 h ν 3 c 2 1 e h ν / k T − 1 I_\nu=ch\nu npp^2\frac{dp}{d\nu}=\frac{2h\nu^3}{c^2}\frac{1}{e^{h\nu/kT}-1} Iν=chνnpp2dνdp=c22hν3ehν/kT11
  此即普朗克方程

理想气体

粒子数密度

  理想气体的分布是一种特殊情况下的分布

  对于非相对论性理想气体而言,粒子能量 ϵ i = ϵ 0 \epsilon_i=\epsilon_0 ϵi=ϵ0 ϵ ( p ) = p 2 2 m \epsilon(p)=\dfrac{p^2}{2m} ϵ(p)=2mp2 v = p m v=\dfrac{p}{m} v=mp

  因此,对 p p p积分即可得到粒子数密度:
n = 4 π h 3 g ∫ 0 ∞ p 2 e μ k T e − ϵ 0 k T e − p 2 2 m k T d p = 4 π g h 3 π 4 ( 2 m k T ) 3 / 2 e ( μ − ϵ 0 ) / k T \begin{aligned} n&=\frac{4\pi}{h^3}g\int^\infty_0 p^2 e^\frac{\mu}{kT}e^{-\frac{\epsilon_0}{kT}}e^{-\frac{p^2}{2mkT}}dp\\ &=\frac{4\pi g}{h^3}\frac{\sqrt{\pi}}{4}(2mkT)^{3/2}e^{(\mu-\epsilon_0)/kT} \end{aligned} n=h34πg0p2ekTμekTϵ0e2mkTp2dp=h34πg4π (2mkT)3/2e(μϵ0)/kT
  如果使用经典统计,则应满足下述条件:
e μ − ϵ 0 k T = n h 3 g ( 2 π m k T ) 3 2 ≪ 1 λ = h p ,   ⟨ p ⟩ = 1 n ∫ 0 ∞ p d n = 2 π 2 π m k T ⟨ n λ m 3 ⟩ = n h 3 ⟨ 1 p 3 ⟩ ≈ n h 3 ( 2 π m k T ) 3 2 ≪ 1 n T − 3 / 2 ≪ ( 2 π m k ) 3 / 2 h 3 \begin{aligned} &e^\frac{\mu-\epsilon_0}{kT}=\frac{nh^3}{g(2\pi mkT)^\frac{3}{2}}\ll 1\\ &\lambda=\frac{h}{p},\ \langle p\rangle=\frac{1}{n}\int^\infty_0 p dn=\frac{2}{\pi}\sqrt{2\pi mkT}\\ &\langle n\lambda^3_m\rangle=nh^3\langle\frac{1}{p^3}\rangle\approx \frac{nh^3}{(2\pi mkT)^\frac{3}{2}}\ll 1\\ & nT^{-3/2}\ll\frac{(2\pi mk)^{3/2}}{h^3} \end{aligned} ekTμϵ0=g(2πmkT)23nh31λ=ph, p=n10pdn=π22πmkT nλm3=nh3p31(2πmkT)23nh31nT3/2h3(2πmk)3/2

压强、内能

  利用前面得到的 P P P u u u的计算方式,可以积分得到:
P = n k T u = 3 2 n k T \begin{aligned} &P=nkT\\ &u=\frac{3}{2}nkT \end{aligned} P=nkTu=23nkT
  以及压强与内能之间的关系:
P = ( γ − 1 ) u P=(\gamma -1)u P=(γ1)u
  其中, γ = 5 3 \gamma=\dfrac{5}{3} γ=35

  根据热力学第一定律(对每个粒子的平均值而言),有:
T d s = d u + P d V = 3 2 k d T + n k T d ( 1 n ) d s = 3 2 k d T T − k d n n s = k ln ⁡ ( T 3 / 2 n ) + s 0 \begin{aligned} &Tds=du+PdV=\frac{3}{2}kdT+nkTd\left(\frac{1}{n}\right)\\ &ds=\frac{3}{2}k\frac{dT}{T}-k\frac{dn}{n}\\ &s=k\ln(\frac{T^{3/2}}{n})+s_0 \end{aligned} Tds=du+PdV=23kdT+nkTd(n1)ds=23kTdTkndns=kln(nT3/2)+s0
  常数 s 0 s_0 s0无法由经典给出,需要利用低密度下量子分布与经典分布的化学势相同这一关系给出:
s 0 = 5 2 k + 3 2 k ln ⁡ ( 2 π m k h 2 ) + k ln ⁡ 2 s = k ln ⁡ ( T 3 / 2 n ) / m + s 0 m \begin{aligned} &s_0=\frac{5}{2}k+\frac{3}{2}k\ln\left(\frac{2\pi mk}{h^2}\right)+k\ln 2\\ &s=k\ln\left(\frac{T^{3/2}}{n}\right)/m + \frac{s_0}{m} \end{aligned} s0=25k+23kln(h22πmk)+kln2s=kln(nT3/2)/m+ms0

多成分理想气体

  设总粒子数为 n n n,其中电子数为 n e n_e ne,离子数为 n I n_I nI。则对于 n I n_I nI而言:
n I = ∑ i n i = ∑ i ρ m H X i A i = ρ μ I m H n_I=\sum_i n_i=\sum_i\frac{\rho}{m_H}\frac{X_i}{A_i}=\frac{\rho}{\mu_I m_H} nI=ini=imHρAiXi=μImHρ
  其中, X i X_i Xi为质量丰度, A i A_i Ai为分子量,而对于 μ I \mu_I μI而言:
1 μ I ≡ ∑ i X i A i ≈ X + 1 4 Y + 1 − X − Y ⟨ A ⟩ \frac{1}{\mu_I}\equiv \sum_i\frac{X_i}{A_i}\approx X+\frac{1}{4}Y+\frac{1-X-Y}{\langle A\rangle} μI1iAiXiX+41Y+A1XY
  其中 X X X为氢占的质量, Y Y Y为氦占的质量, ⟨ A ⟩ \langle A\rangle A为其他物质的平均分子量

  对于太阳而言, X = 0.707 X=0.707 X=0.707 Y = 0.274 Y=0.274 Y=0.274 ⟨ A ⟩ ≈ 20 \langle A\rangle\approx 20 A20 μ I = 1.29 \mu_I=1.29 μI=1.29

  接下来看电子 n e n_e ne,假设完全电离,则有:
n e = ∑ i Z i n i = ρ m H ∑ i X i Z i A i = ρ m H μ e n_e=\sum_i Z_i n_i=\frac{\rho}{m_H}\sum_i X_i\frac{Z_i}{A_i}=\frac{\rho}{m_H\mu_e} ne=iZini=mHρiXiAiZi=mHμeρ
  引入电子分子权重( Z Z Z为电子数):
1 μ e ≡ ∑ i X i Z i A i = X + 1 2 Y + ( 1 − X − Y ) ⟨ Z A ⟩ ≈ 1 2 ( 1 + X ) \frac{1}{\mu_e}\equiv\sum_i X_i\frac{Z_i}{A_i}=X+\frac{1}{2}Y+(1-X-Y)\langle\frac{Z}{A}\rangle\approx\frac{1}{2}(1+X) μe1iXiAiZi=X+21Y+(1XY)AZ21(1+X)
  由此,得到总的气体压强:
P = ( n I + n e ) k T = ρ μ m H k T P=(n_I+n_e)kT=\frac{\rho}{\mu m_H}kT P=(nI+ne)kT=μmHρkT
  其中:
1 μ = 1 μ e + 1 μ I \frac{1}{\mu}=\frac{1}{\mu_e}+\frac{1}{\mu_I} μ1=μe1+μI1
  对于太阳而言, μ = 0.61 \mu=0.61 μ=0.61

  对于电离物质粒子之间的库仑作用,如果与粒子的热能相比很小,则可以忽略前者的作用,属于理想气体:
Z e 2 d ∼ Z e 2 n 1 / 3 ≪ 3 2 k T ρ ≪ 85 ( T 1 0 6 K ) 3 g   c m − 3 \begin{aligned} &\frac{Ze^2}{d}\sim Ze^2n^{1/3}\ll\frac{3}{2}kT\\ &\rho \ll 85\left(\frac{T}{10^6 K}\right)^3 g\ cm^{-3} \end{aligned} dZe2Ze2n1/323kTρ85(106KT)3g cm3
  而如果密度远高于临界值,则晶格化(库仑力作用远大于热能,使得粒子固定)将会变得非常重要:
Z e 2 d ≫ 3 2 k T \frac{Ze^2}{d}\gg\frac{3}{2}kT dZe223kT

简并的费米子

  对于自旋半整数的粒子, ϵ 0 = 0 \epsilon_0=0 ϵ0=0,简并度 g = 2 s + 1 = 2 g=2s+1=2 g=2s+1=2,一般的分布函数为Fermi-Dirac分布:
F ( ϵ ) = 1 exp ⁡ [ ϵ − ( μ − m c 2 ) k T ] + 1 F(\epsilon)=\frac{1}{\exp\left[\frac{\epsilon-(\mu-mc^2)}{kT}\right]+1} F(ϵ)=exp[kTϵ(μmc2)]+11
  其中:
ϵ ( p ) = m c 2 [ 1 + ( p m c ) 2 − 1 ] v = ∂ ϵ ∂ p = p m [ 1 + ( p m c ) 2 ] − 1 2 \begin{aligned} &\epsilon(p)=mc^2\left[\sqrt{1+\left(\frac{p}{mc}\right)^2}-1\right]\\ &v=\frac{\partial \epsilon}{\partial p}=\frac{p}{m}\left[1+\left(\frac{p}{mc}\right)^2\right]^{-\frac{1}{2}} \end{aligned} ϵ(p)=mc2[1+(mcp)2 1]v=pϵ=mp[1+(mcp)2]21

粒子数密度

  由此,可以计算粒子数密度:
n = 2 × 4 π h 3 ∫ 0 ∞ p 2 d p exp ⁡ [ m c 2 + ϵ ( p ) − μ k T ] + 1 n=\frac{2\times 4\pi}{h^3}\int^\infty_0\frac{p^2 dp}{\exp\left[\frac{mc^2+\epsilon(p)-\mu}{kT}\right]+1} n=h32×4π0exp[kTmc2+ϵ(p)μ]+1p2dp
  这样的积分,在一般情况下是很困难的,因此先考虑特殊情况。在完全简并时,有 k T ≪ ( μ − m c 2 ) kT\ll (\mu-mc^2) kT(μmc2),此时的分布函数为:
F ( ϵ ) = { 1 ,   ϵ ≤ ( μ − m c 2 ) 0 ,   ϵ > ( μ − m c 2 ) F(\epsilon)=\left\{\begin{aligned} &1,\ \epsilon\le(\mu-m c^2)\\ &0,\ \epsilon > (\mu -mc^2) \end{aligned}\right. F(ϵ)={1, ϵ(μmc2)0, ϵ>(μmc2)
  引入:
x = p m c ,   x F = p F m c x=\frac{p}{mc},\ x_F=\frac{p_F}{mc} x=mcp, xF=mcpF
  由此得到费米能:
ϵ F = m c 2 [ ( 1 + x F 2 ) 1 2 − 1 ] \epsilon_F=mc^2[(1+x^2_F)^\frac{1}{2}-1] ϵF=mc2[(1+xF2)211]
  于是:
n = 8 π h 3 ∫ 0 p F p 2 d p = 8 π ( h m c ) − 3 ∫ 0 x F x 2 d x = 8 π 3 ( h m c ) − 3 x F 3 n=\frac{8\pi}{h^3}\int^{p_F}_0 p^2 dp=8\pi\left(\frac{h}{mc}\right)^{-3}\int^{x_F}_0 x^2 dx=\frac{8\pi}{3}\left(\frac{h}{mc}\right)^{-3}x^3_F n=h38π0pFp2dp=8π(mch)30xFx2dx=38π(mch)3xF3
  由此可以计算电子密度:
μ e = ρ n e m A \mu_e=\frac{\rho}{n_em_A} μe=nemAρ
  代入 n e n_e ne,得到 ρ μ e ≈ 9.7 × 1 0 5 x F 3 g   c m − 3 \dfrac{\rho}{\mu_e}\approx 9.7\times 10^5 x^3_F g\ cm^{-3} μeρ9.7×105xF3g cm3 m A m_A mA是什么?)

压强

  于是,即可计算压强:
P = 8 π 3 m 4 c 2 h 3 ∫ 0 x F x 4 d x ( 1 + x 2 ) 1 2 = A f ( x F ) P=\frac{8\pi}{3}\frac{m^4 c^2}{h^3}\int^{x_F}_0\frac{x^4 dx}{(1+x^2)^\frac{1}{2}}=Af(x_F) P=38πh3m4c20xF(1+x2)21x4dx=Af(xF)
  其中:
A = π 3 ( h m c ) − 3 m c 2 f ( x ) = x ( 2 x 2 − 3 ) ( 1 + x 2 ) 1 2 + 3 sinh ⁡ − 1 x sinh ⁡ − 1 x = ln ⁡ ( x + 1 + x 2 ) \begin{aligned} &A=\frac{\pi}{3}\left(\frac{h}{mc}\right)^{-3}mc^2\\ &f(x)=x(2x^2-3)(1+x^2)^\frac{1}{2}+3\sinh^{-1}x\\ &\sinh^{-1}x=\ln(x+\sqrt{1+x^2}) \end{aligned} A=3π(mch)3mc2f(x)=x(2x23)(1+x2)21+3sinh1xsinh1x=ln(x+1+x2 )

内能

  对应的内能为:
u = A g ( x F ) g ( x ) = 8 x 3 [ ( 1 + x 2 ) 1 2 − 1 ] − f ( x ) \begin{aligned} &u=Ag(x_F)\\ &g(x)=8x^3[(1+x^2)^\frac{1}{2}-1]-f(x) \end{aligned} u=Ag(xF)g(x)=8x3[(1+x2)211]f(x)
  在非相对论情况下:
x F → 0 ,   f ( x ) = 8 5 x 5 ,   g ( x ) = 12 5 x 5 x_F\rightarrow 0,\ f(x)=\frac{8}{5}x^5,\ g(x)=\frac{12}{5}x^5 xF0, f(x)=58x5, g(x)=512x5

P e = 8 π 15 ( h m e c ) − 3 m e c 2 x F 5 = 1 20 ( 3 π ) 1 / 3 ( h m e c ) 2 ( 1 μ e m A ) 5 / 3 m e c 2 ρ 5 / 3 ≈ 1.019 × 1 0 18 ( ρ μ e ) 5 / 3 \begin{aligned} P_e&=\frac{8\pi}{15}\left(\frac{h}{m_e c}\right)^{-3} m_e c^2 x^5_F\\ &=\frac{1}{20}\left(\frac{3}{\pi}\right)^{1/3}\left(\frac{h}{m_ec}\right)^2\left(\frac{1}{\mu_e m_A}\right)^{5/3}m_e c^2\rho^{5/3}\\ &\approx 1.019\times 10^{18}\left(\frac{\rho}{\mu_e}\right)^{5/3} \end{aligned} Pe=158π(mech)3mec2xF5=201(π3)1/3(mech)2(μemA1)5/3mec2ρ5/31.019×1018(μeρ)5/3

  (单位:cgs)
u = 4 π 5 ( h m c ) − 3 m c 2 x F 5 ∝ ρ 5 3 u = ( 3 2 ) P γ = 5 3 u=\frac{4\pi}{5}\left(\frac{h}{mc}\right)^{-3}mc^2 x^5_F\propto \rho^{\frac{5}{3}}\\ u=\left(\frac{3}{2}\right)P\\ \gamma=\frac{5}{3} u=54π(mch)3mc2xF5ρ35u=(23)Pγ=35
  在极相对论情况下:
x F → ∞ ,   f ( x ) → 2 x 4 ,   g ( x ) → 6 x 4 P e = 2 π 3 ( h m e c ) − 3 m e c 2 x F 4 = 1 8 ( 3 π ) 1 / 3 ( h m e c ) m e c 2 n e 4 / 3 ≈ 1.243 × 1 0 19 ( ρ μ e ) 4 / 3 x_F\rightarrow \infty,\ f(x)\rightarrow 2x^4,\ g(x)\rightarrow 6x^4\\ P_e=\frac{2\pi}{3}\left(\frac{h}{m_e c}\right)^{-3}m_e c^2 x^4_F=\frac{1}{8}\left(\frac{3}{\pi}\right)^{1/3}\left(\frac{h}{m_e c}\right)m_e c^2n_e^{4/3}\approx 1.243\times 10^{19}\left(\frac{\rho}{\mu_e}\right)^{4/3} xF, f(x)2x4, g(x)6x4Pe=32π(mech)3mec2xF4=81(π3)1/3(mech)mec2ne4/31.243×1019(μeρ)4/3
  (单位:cgs)
U e = 3 P e ,   γ = 4 3 U_e=3P_e,\ \gamma=\frac{4}{3} Ue=3Pe, γ=34

简并

  由热动能和费米能的大小进行比较,可以得知简并与非简并:

  若 k T ≫ E f kT\gg E_f kTEf,则情况为非简并

  若 k T ≪ E f kT\ll E_f kTEf,则情况为简并

  根据 ρ μ e = 9.7 × 1 0 5 x F 3   g   c m − 3 \dfrac{\rho}{\mu_e}=9.7\times 10^5 x^3_F\ g\ cm^{-3} μeρ=9.7×105xF3 g cm3,可以得到:

  相对论性简并的条件: ρ μ e ≫ 4.6 × 1 0 6 ( T 1 0 10 k ) 3 \dfrac{\rho}{\mu_e}\gg 4.6\times 10^6 \left(\frac{T}{10^{10}k}\right)^3 μeρ4.6×106(1010kT)3

  非相对论性非简并: ϵ F = m c 2 x F 2 2 ,   ρ μ e ≪ 6.0 ( T 1 0 6 k ) 3 2   g   c m − 3 \epsilon_F=mc^2\dfrac{x_F^2}{2},\ \dfrac{\rho}{\mu_e}\ll 6.0\left(\frac{T}{10^6 k}\right)^\frac{3}{2}\ g\ cm^{-3} ϵF=mc22xF2, μeρ6.0(106kT)23 g cm3

  根据前面的积分公式,部分简并的物态-积分形式表示如下:
ψ = μ − m c 2 k T n = 8 π h 3 ∫ 0 ∞ p 2 d p 1 + e ( ϵ / k T − ψ ) P e = 8 π 3 h 3 ∫ 0 ∞ p 3 v ( p ) d p 1 + e ( ϵ / k T − ψ ) U e = 8 π h 3 ∫ 0 ∞ p 2 ϵ ( p ) d p 1 + e ( ϵ / k T − ψ ) \begin{aligned} &\psi=\frac{\mu-mc^2}{kT}\\ &n=\frac{8\pi}{h^3}\int^\infty_0\frac{p^2dp}{1+e^{(\epsilon/kT-\psi)}}\\ &P_e=\frac{8\pi}{3h^3}\int^\infty_0\frac{p^3v(p)dp}{1+e^{(\epsilon/kT-\psi)}}\\ &U_e=\frac{8\pi}{h^3}\int^\infty_0\frac{p^2\epsilon(p)dp}{1+e^{(\epsilon/kT-\psi)}} \end{aligned} ψ=kTμmc2n=h38π01+e(ϵ/kTψ)p2dpPe=3h38π01+e(ϵ/kTψ)p3v(p)dpUe=h38π01+e(ϵ/kTψ)p2ϵ(p)dp
  在非相对论情形下,表示如下:
η = p 2 2 m k T n = 4 π h 3 ( 2 m k T ) 3 2 ∫ 0 ∞ η 1 / 2 d η 1 + e η − ψ P e = 4 π 3 m h 3 ( 2 m k T ) 5 2 ∫ 0 ∞ η 3 / 2 d η 1 + e η − ψ u e = 4 π 2 m h 3 ( 2 m k T ) 5 2 ∫ 0 ∞ η 3 / 2 d η 1 + e η − ψ = 3 2 P \begin{aligned} &\eta=\frac{p^2}{2mkT}\\ &n=\frac{4\pi}{h^3}(2mkT)^\frac{3}{2}\int^\infty_0\frac{\eta^{1/2}d\eta}{1+e^{\eta-\psi}}\\ &P_e=\frac{4\pi}{3mh^3}(2mkT)^\frac{5}{2}\int^\infty_0\frac{\eta^{3/2}d\eta}{1+e^{\eta-\psi}}\\ &u_e=\frac{4\pi}{2mh^3}(2mkT)^\frac{5}{2}\int^\infty_0\frac{\eta^{3/2}d\eta}{1+e^{\eta-\psi}}=\frac{3}{2}P \end{aligned} η=2mkTp2n=h34π(2mkT)2301+eηψη1/2dηPe=3mh34π(2mkT)2501+eηψη3/2dηue=2mh34π(2mkT)2501+eηψη3/2dη=23P
  在相对论情形下,表示如下:
ξ = p c k T n = 8 π h 3 ( k T c ) 3 ∫ 0 ∞ ξ 2 d ξ 1 + e ξ − ψ P e = 8 π c 3 h 3 ( k T c ) 4 ∫ 0 ∞ ξ 3 d ξ 1 + e ξ − ψ u e = 8 π c h 3 ( k T c ) 4 ∫ 0 ∞ ξ 3 d ξ 1 + e ξ − ψ = 3 P \begin{aligned} &\xi=\frac{pc}{kT}\\ &n=\frac{8\pi}{h^3}\left(\frac{kT}{c}\right)^3\int^\infty_0\frac{\xi^2 d\xi}{1+e^{\xi-\psi}}\\ &P_e=\frac{8\pi c}{3h^3}\left(\frac{kT}{c}\right)^4\int^\infty_0\frac{\xi^3 d\xi}{1+e^{\xi-\psi}}\\ &u_e=\frac{8\pi c}{h^3}\left(\frac{kT}{c}\right)^4\int^\infty_0\frac{\xi^3 d\xi}{1+e^{\xi-\psi}}=3P \end{aligned} ξ=kTpcn=h38π(ckT)301+eξψξ2dξPe=3h38πc(ckT)401+eξψξ3dξue=h38πc(ckT)401+eξψξ3dξ=3P
  对于弱简并的情况,由于 exp ⁡ ( ψ ) \exp(\psi) exp(ψ)是小量,因此可以对上式进行泰勒展开

  弱简并在小质量恒星主序阶段和一些演化晚期非常重要

  以极相对论性为例:
1 1 + e ξ − ψ = e ψ − ξ [ 1 − e ψ − ξ + e 2 ( ψ − ξ ) + ⋯   ] \frac{1}{1+e^{\xi-\psi}}=e^{\psi-\xi}[1-e^{\psi-\xi}+e^{2(\psi-\xi)}+\cdots] 1+eξψ1=eψξ[1eψξ+e2(ψξ)+]

v ≡ n e h 3 8 π ( k T c ) 3 = ∫ 0 ∞ ξ 2 e ψ − ξ ( 1 − e ψ − ξ + ⋯   ) d ξ = Γ ( 3 ) e ψ − Γ ( 3 ) 2 3 e 2 ψ + ⋯ = 2 e ψ − 1 4 e 2 ψ + ⋯ \begin{aligned} v&\equiv n_e\frac{h^3}{8\pi}\left(\frac{kT}{c}\right)^3=\int^\infty_0\xi^2 e^{\psi-\xi}(1-e^{\psi-\xi}+\cdots)d\xi\\ &=\Gamma(3)e^\psi-\frac{\Gamma(3)}{2^3}e^{2\psi}+\cdots\\ &=2e^\psi-\frac{1}{4}e^{2\psi}+\cdots \end{aligned} vne8πh3(ckT)3=0ξ2eψξ(1eψξ+)dξ=Γ(3)eψ23Γ(3)e2ψ+=2eψ41e2ψ+

  保留到二阶项后:
e ψ ≈ 4 ( 1 ± 1 − v ) e^\psi\approx 4(1\pm\sqrt{1-v}) eψ4(1±1v )

P e = 8 π c 3 h 3 ( k T c ) 4 ∫ 0 ∞ ξ 3 e ψ − ξ ( 1 − e ψ − ξ + ⋯   ) d ξ = 8 π c 3 h 3 ( k T c ) 4 ( 6 e ψ − 3 8 e 2 ψ + ⋯   ) \begin{aligned} P_e&=\frac{8\pi c}{3h^3}\left(\frac{kT}{c}\right)^4\int^\infty_0\xi^3 e^{\psi-\xi}(1-e^{\psi-\xi}+\cdots)d\xi\\ &=\frac{8\pi c}{3h^3}\left(\frac{kT}{c}\right)^4(6e^\psi-\frac{3}{8}e^{2\psi}+\cdots) \end{aligned} Pe=3h38πc(ckT)40ξ3eψξ(1eψξ+)dξ=3h38πc(ckT)4(6eψ83e2ψ+)

具有内部结构的气体物态方程

  热平衡时,不同能级的分布服从玻尔兹曼分布,对于两个能级 i i i j j j,满足下述关系:
N i N j = g i g j e − ( ϵ i − ϵ j ) k T \frac{N_i}{N_j}=\frac{g_i}{g_j}e^\frac{-(\epsilon_i-\epsilon_j)}{kT} NjNi=gjgiekT(ϵiϵj)
  取基态能量为0,则有:
N i = N g i e − ϵ i k T Z N_i=N\frac{g_ie^\frac{-\epsilon_i}{kT}}{Z} Ni=NZgiekTϵi
  其中, Z Z Z为配分函数:
Z = ∑ j g j e − ϵ j k T Z=\sum_j g_j e^{\frac{-\epsilon_j}{kT}} Z=jgjekTϵj
  把每一个粒子的能量加起来,得到内部的能级对内能的贡献:
U = N ⟨ ϵ ⟩ = N ∑ i ϵ i g i e − ϵ i / k T Z U=N\langle\epsilon\rangle=\frac{N\sum_i\epsilon_ig_i e^{-\epsilon_i/kT}}{Z} U=Nϵ=ZNiϵigieϵi/kT
  一般不计内部结构对压强的影响

  在恒星内部,密度高,原子间距小,因为原子轨道半径随能级增大的速度很快,所以只要考虑 Z Z Z的有限几个能级就可以

Saha方程——热平衡时电离程度与热力学量关系

  如果考虑到了电子离子的分布的话,就需要考虑电离程度了

  对于被电离出的电子,取原子基态的能量 E = 0 E=0 E=0,记电离势为 χ I \chi_I χI,则自由电子能量为:
Δ ϵ = χ 1 + 1 2 m e v 2 \Delta\epsilon=\chi_1+\frac{1}{2}m_e v^2 Δϵ=χ1+21mev2
  则此时的热平衡玻尔兹曼分布写作:
d n 0 + ( v ) n 0 = g g 0 exp ⁡ [ − χ I + 1 2 m e v 2 k T ] \frac{dn^+_0(v)}{n_0}=\frac{g}{g_0}\exp\left[-\frac{\chi_I+\frac{1}{2}m_ev^2}{kT}\right] n0dn0+(v)=g0gexp[kTχI+21mev2]
  其中, d n 0 + ( v ) dn^+_0(v) dn0+(v)表示离子在基态,电子速度介于 v ∼ v + d v v\sim v+dv vv+dv之间的态的粒子数, g g g表示离子在基态,电子自由态的权重 g = g e g 0 + g=g_eg^+_0 g=geg0+

   g e g_e ge为电子态的统计权重:
g e = 2 d 3 x ⃗ d 3 p e ⃗ h 3 = 2 d 3 p e ⃗ h 3 n e g_e=\frac{2d^3\vec xd^3 \vec {p_e}}{h^3}=\frac{2d^3\vec {p_e}}{h^3 n_e} ge=h32d3x d3pe =h3ne2d3pe
  其中的常数2是因为电子的自旋有两个方向

  由于 d 3 p e ⃗ = 4 π p e 2 d p e = 4 π m e 3 v e 2 d v e d^3\vec{p_e}=4\pi p^2_e dp_e=4\pi m^3_e v^2_e dv_e d3pe =4πpe2dpe=4πme3ve2dve,因此:
d n 0 + ( v ) n 0 = 8 π m e 3 h 3 g 0 + n e exp ⁡ ( − χ I + m e v 2 / 2 k T ) v 2 d v \frac{dn^+_0(v)}{n_0}=\frac{8\pi m^3_e}{h^3}\frac{g^+_0}{n_e}\exp\left(-\frac{\chi_I+m_e v^2/2}{kT}\right)v^2 dv n0dn0+(v)=h38πme3neg0+exp(kTχI+mev2/2)v2dv
  对 v v v积分,得到:
n 0 + n e n 0 = ( 2 π m e k T h 2 ) 3 / 2 2 g 0 + g 0 exp ⁡ [ − χ I k T ] \frac{n^+_0n_e}{n_0}=\left(\frac{2\pi m_e kT}{h^2}\right)^{3/2}\frac{2g_0^+}{g_0}\exp\left[-\frac{\chi_I}{kT}\right] n0n0+ne=(h22πmekT)3/2g02g0+exp[kTχI]
  代入到玻尔兹曼分布中,得到:
n 0 n = g Z ( T ) ,   n 0 + n + = g 0 + Z + ( T ) \frac{n_0}{n}=\frac{g}{Z(T)},\ \frac{n^+_0}{n^+}=\frac{g_0^+}{Z^+(T)} nn0=Z(T)g, n+n0+=Z+(T)g0+
  最后,得出Saha方程:
n + n e n = 2 Z + ( T ) Z ( T ) ( 2 π m e k T h 2 ) 3 / 2 exp ⁡ [ − χ I k T ] \frac{n^+n_e}{n}=\frac{2Z^+(T)}{Z(T)}\left(\frac{2\pi m_e kT}{h^2}\right)^{3/2}\exp\left[-\frac{\chi_I}{kT}\right] nn+ne=Z(T)2Z+(T)(h22πmekT)3/2exp[kTχI]
  Saha方程用于描述相邻两个电离态 n n n n + n^+ n+的粒子数密度关系(更高一级的电离态是什么?)

纯氢气体的电离

  纯氢只能电离为质子和电子,就不能再往后电离了,所以只有两种电离状态。电中性条件为:
n e = n + n = n + + n 0 n_e=n^+\\ n=n^++n^0 ne=n+n=n++n0
  其中, n 0 n_0 n0表示基态, n 0 n^0 n0表示中性的, n + n^+ n+表示电离的。第一条表示纯氢电离后电子和离子数目相等,第二条表示总数目等于电离的加上中性的

  引入电离度的定义 x = n + n x=\dfrac{n^+}{n} x=nn+,由Saha方程得到(配分函数怎么算出来的基态离子:中性氢基态=1:2?):
x 2 1 − x = 1 n ( 2 π m e k T h 2 ) 3 2 e − χ I k T x 2 1 − x = 4 × 1 0 − 9 g   c m − 3 ρ T 3 2 e − 1.578 × 1 0 5 T ≡ Λ x = − Λ ± Λ 2 + 4 Λ 2 \frac{x^2}{1-x}=\frac{1}{n}\left(\frac{2\pi m_e kT}{h^2}\right)^\frac{3}{2}e^\frac{-\chi_I}{kT}\\ \frac{x^2}{1-x}=\frac{4\times 10^{-9} g\ cm^{-3}}{\rho}T^\frac{3}{2}e^{\frac{-1.578\times 10^ 5}{T}}\equiv \Lambda\\ x=\frac{-\Lambda\pm \sqrt{\Lambda^2+4\Lambda}}{2} 1xx2=n1(h22πmekT)23ekTχI1xx2=ρ4×109g cm3T23eT1.578×105Λx=2Λ±Λ2+4Λ
  最后就得到了电离度的表达式

Saha方程的不适用范围

  在太阳冕区等地方,粒子密度低,热平衡假设不成立,因此Saha方程不适用

  而密度高时压强电离,电离程度高了之后,就主要跃迁移到紫外波段了。如果离子之间的距离小于波尔半径,电子就可以自由跑来跑去,和导电一样(金属氢)(这个情况叫做压强电离),Saha方程不适用

  温度低时,离子之间有库仑作用,库仑能比热能大很多

  例如,木星体积大,温度低,压强大,密度高,Saha方程不适用

部分电离物质的热力学性质

压强、内能、热容

  以纯氢为例,设电离度为 x x x,则粒子数为 ( 1 + x ) n (1+x)n (1+x)n。其中, n n n为氢原子的粒子数密度。由此得到压强为:
P = ( 1 + x ) n k T = ( 1 + x ) ρ k T / m A P=(1+x)nkT=(1+x)\rho kT/m_A P=(1+x)nkT=(1+x)ρkT/mA
  单位体积内能为:
U = 3 2 ( 1 + x ) n k T + x n χ 1 U=\frac{3}{2}(1+x)nkT+xn\chi_1 U=23(1+x)nkT+xnχ1
  单位质量内能为:
ϵ = 3 2 P ρ + x m H χ I \epsilon=\frac{3}{2}\frac{P}{\rho}+\frac{x}{m_H}\chi_I ϵ=23ρP+mHxχI
  热容量为:
c V = ( ∂ ϵ ∂ T ) ρ = 3 2 ( 1 + x ) k m H + 3 2 k m H ( ∂ x ∂ T ) ρ + χ I k ( ∂ x ∂ T ) ρ = 3 2 ( 1 + x ) k m H + ( 3 2 k m H + χ I k ) ( ∂ x ∂ T ) ρ \begin{aligned} c_V&=\left(\frac{\partial\epsilon}{\partial T}\right)_\rho\\ &=\frac{3}{2}(1+x)\frac{k}{m_H}+\frac{3}{2}\frac{k}{m_H}\left(\frac{\partial x}{\partial T}\right)_\rho+\frac{\chi_I}{k}\left(\frac{\partial x}{\partial T}\right)_\rho\\ &=\frac{3}{2}(1+x)\frac{k}{m_H}+\left(\frac{3}{2}\frac{k}{m_H}+\frac{\chi_I}{k}\right)\left(\frac{\partial x}{\partial T}\right)_\rho \end{aligned} cV=(Tϵ)ρ=23(1+x)mHk+23mHk(Tx)ρ+kχI(Tx)ρ=23(1+x)mHk+(23mHk+kχI)(Tx)ρ
  对Saha方程微分:
[ ∂ ∂ T ( x 2 1 − x ) ] n = 1 n ( 2 π m e k T h 2 ) 3 2 e − χ I k T ( 3 2 T + χ I k T 2 ) \left[\frac{\partial }{\partial T}\left(\frac{x^2}{1-x}\right)\right]_n=\frac{1}{n}\left(\frac{2\pi m_e kT}{h^2}\right)^\frac{3}{2}e^{-\frac{\chi_I}{kT}}\left(\frac{3}{2T}+\frac{\chi_I}{kT^2}\right) [T(1xx2)]n=n1(h22πmekT)23ekTχI(2T3+kT2χI)
  从而得到:
( ∂ x ∂ T ) n = ( 1 − x ) 2 2 x − x 2 1 n ( 2 π m e k T h 2 ) 3 2 ( 3 2 T + χ I k T 2 ) e − χ I k T \left(\frac{\partial x}{\partial T}\right)_n=\frac{(1-x)^2}{2x-x^2}\frac{1}{n}\left(\frac{2\pi m_e kT}{h^2}\right)^\frac{3}{2}\left(\frac{3}{2T}+\frac{\chi_I}{kT^2}\right)e^{-\frac{\chi_I}{kT}} (Tx)n=2xx2(1x)2n1(h22πmekT)23(2T3+kT2χI)ekTχI
  于是,可以得到:
c V = c V 0 [ 1 + 2 3 ( 3 2 + χ H k T ) 2 x ( 1 − x ) ( 1 + x ) ( 2 − x ) ] c_V=c^0_V\left[1+\frac{2}{3}\left(\frac{3}{2}+\frac{\chi_H}{kT}\right)^2\frac{x(1-x)}{(1+x)(2-x)}\right] cV=cV0[1+32(23+kTχH)2(1+x)(2x)x(1x)]
  其中, c V 0 = 3 2 ( 1 + x ) k m H c^0_V=\dfrac{3}{2}(1+x)\dfrac{k}{m_H} cV0=23(1+x)mHk。类似地,也可以得到:
c P = c V 0 [ 5 3 + 1 3 ( 5 2 + χ I k T ) 2 x ( 1 − x ) ] c_P=c^0_V\left[\frac{5}{3}+\frac{1}{3}\left(\frac{5}{2}+\frac{\chi_I}{kT}\right)^2x(1-x)\right] cP=cV0[35+31(25+kTχI)2x(1x)]

绝热指数

  绝热时, d Q = 0 dQ=0 dQ=0。定义 Γ 1 ≡ ( ∂ ln ⁡ P ∂ ln ⁡ ρ ) a d \Gamma_1\equiv\left(\dfrac{\partial\ln P}{\partial \ln \rho}\right)_{ad} Γ1(lnρlnP)ad,则有:
d P P + Γ 1 d V V = 0 \frac{dP}{P}+\Gamma_1\frac{dV}{V}=0 PdP+Γ1VdV=0
  如果将 d Q dQ dQ写作 d Q = d ϵ + P d 1 ρ = c V d T + … d ρ dQ=d\epsilon+Pd\dfrac{1}{\rho}=c_VdT+\dots d\rho dQ=dϵ+Pdρ1=cVdT+dρ,定义 Γ 3 − 1 ≡ ( ∂ ln ⁡ T ∂ ln ⁡ ρ ) a d \Gamma_3-1\equiv\left(\dfrac{\partial \ln T}{\partial \ln \rho}\right)_{ad} Γ31(lnρlnT)ad,则有:
d T T + ( Γ 3 − 1 ) d V V = 0 \frac{dT}{T}+(\Gamma_3-1)\frac{dV}{V}=0 TdT+(Γ31)VdV=0
  因为 ρ = ρ ( P ,   T ) \rho=\rho(P,\ T) ρ=ρ(P, T),所以 d ρ d\rho dρ可以写作 d ρ = … d P + c P d T d\rho=\dots dP+c_PdT dρ=dP+cPdT,定义 Γ 2 − 1 Γ 2 ≡ ( ∂ ln ⁡ T ∂ ln ⁡ P ) a d \dfrac{\Gamma_2-1}{\Gamma_2}\equiv\left(\dfrac{\partial \ln T}{\partial \ln P}\right)_{ad} Γ2Γ21(lnPlnT)ad,由此即有:
d T T − Γ 2 − 1 Γ 2 d P P = 0 \frac{dT}{T}-\frac{\Gamma_2-1}{\Gamma_2}\frac{dP}{P}=0 TdTΓ2Γ21PdP=0
  由此便得到了三种绝热指数: Γ 1 \Gamma_1 Γ1为绝热压缩系数的倒数, Γ 3 − 1 \Gamma_3-1 Γ31为绝热膨胀系数的倒数, Γ 2 − 1 Γ 2 \dfrac{\Gamma_2-1}{\Gamma_2} Γ2Γ21绝热温度梯度。因为有一个物态方程,所以三个指数中只有两个独立:
( Γ 3 − 1 ) = ( Γ 2 − 1 ) Γ 1 Γ 2 (\Gamma_3-1)=(\Gamma_2-1)\dfrac{\Gamma_1}{\Gamma_2} (Γ31)=(Γ21)Γ2Γ1
  绝热指数与热力学量具有下述关系:
Γ 1 = − c P c V V P ( ∂ P ∂ V ) T Γ 3 − 1 = V T c P − c V c V ( ∂ T ∂ V ) P Γ 2 Γ 2 − 1 = − c P T ( c P − c V ) ( ∂ T ∂ P ) V P \Gamma_1=-\frac{c_P}{c_V}\frac{V}{P}\left(\frac{\partial P}{\partial V}\right)_T\\ \Gamma_3-1=\frac{V}{T}\frac{c_P-c_V}{c_V}\left(\frac{\partial T}{\partial V}\right)_P\\ \frac{\Gamma_2}{\Gamma_2-1}=-\frac{c_PT}{(c_P-c_V)\left(\frac{\partial T}{\partial P}\right)_VP} Γ1=cVcPPV(VP)TΓ31=TVcVcPcV(VT)PΓ21Γ2=(cPcV)(PT)VPcPT
  由此计算得到:
Γ 1 ( x ) = 5 + ( 5 2 + χ I k T ) 2 x ( 1 − x ) 3 + [ 3 2 + ( 3 2 + χ I k T ) 2 ] x ( 1 − x ) Γ 2 ( x ) Γ 2 ( x ) − 1 = 5 + 2 D ( x ) [ χ I k T + ( 3 2 + χ I k T ) ( 5 2 + χ I k T ) ] 2 + D ( x ) ( 3 2 + χ I k T ) Γ 3 ( x ) − 1 = 2 + 2 D ( x ) ( 3 2 + χ I k T ) 3 + 2 D ( x ) ( 3 2 + χ I k T ) 2 D ( x ) = x ( 1 − x ) ( 2 − x ) ( 1 + x ) \Gamma_1(x)=\frac{5+\left(\frac{5}{2}+\frac{\chi_I}{kT}\right)^2x(1-x)}{3+\left[\frac{3}{2}+\left(\frac{3}{2}+\frac{\chi_I}{kT}\right)^2\right]x(1-x)}\\ \frac{\Gamma_2(x)}{\Gamma_2(x)-1}=\frac{5+2D(x)\left[\frac{\chi_I}{kT}+\left(\frac{3}{2}+\frac{\chi_I}{kT}\right)\left(\frac{5}{2}+\frac{\chi_I}{kT}\right)\right]}{2+D(x)\left(\frac{3}{2+\frac{\chi_I}{kT}}\right)}\\ \Gamma_3(x)-1=\frac{2+2D(x)\left(\frac{3}{2}+\frac{\chi_I}{kT}\right)}{3+2D(x)\left(\frac{3}{2}+\frac{\chi_I}{kT}\right)^2}\\ D(x)=\frac{x(1-x)}{(2-x)(1+x)} Γ1(x)=3+[23+(23+kTχI)2]x(1x)5+(25+kTχI)2x(1x)Γ2(x)1Γ2(x)=2+D(x)(2+kTχI3)5+2D(x)[kTχI+(23+kTχI)(25+kTχI)]Γ3(x)1=3+2D(x)(23+kTχI)22+2D(x)(23+kTχI)D(x)=(2x)(1+x)x(1x)
  因为大部分的热量用于电离气体而不是升高温度,所以热容量大

  在部分电离区,绝热指数小,原因在于电离参数对温度很敏感

  部分电离区是恒星振动不稳定性的源

辐射和气体混合热力学性质

压强、内能

  在热平衡下:
P = n k T + ( 1 3 ) a T 4 = ρ μ m A k T + 1 3 a T 4 u = 3 2 1 μ m A k T + a T 4 ρ P=nkT+\left(\frac{1}{3}\right)aT^4=\frac{\rho}{\mu m_A}kT+\frac{1}{3}aT^4\\ u=\frac{3}{2}\frac{1}{\mu m_A}kT+\frac{aT^4}{\rho} P=nkT+(31)aT4=μmAρkT+31aT4u=23μmA1kT+ρaT4
  ( u u u为单位质量的内能)

  在准静态变化时,由热力学第一定律,有:
d Q = d u + P d V = ( ∂ u ∂ T ) V d T + ( ∂ u ∂ V ) T d V + P d V ( ∂ u ∂ T ) V = 4 a T 3 V + 3 2 k μ m A ( ∂ u ∂ V ) T = a T 4 dQ=du+PdV=\left(\frac{\partial u}{\partial T}\right)_VdT+\left(\frac{\partial u}{\partial V}\right)_TdV+PdV\\ \left(\frac{\partial u}{\partial T}\right)_V=4aT^3V+\frac{3}{2}\frac{k}{\mu m_A}\left(\frac{\partial u}{\partial V}\right)_T=aT^4 dQ=du+PdV=(Tu)VdT+(Vu)TdV+PdV(Tu)V=4aT3V+23μmAk(Vu)T=aT4
  由此得到:
d Q = ( 4 a T 3 V + 3 2 k μ m A ) d T + ( 4 3 a T 4 + k μ m A T V ) d V dQ=\left(4aT^3V+\frac{3}{2}\frac{k}{\mu m_A}\right)dT+\left(\frac{4}{3}aT^4+\frac{k}{\mu m_A}\frac{T}{V}\right)dV dQ=(4aT3V+23μmAk)dT+(34aT4+μmAkVT)dV

物态方程、绝热系数

  对 P P P进行微分,得到:
d P = ( 4 3 a T 4 + k T μ m A V ) d T T − k T μ m A V d V V = ( 4 P r a d + P g a s ) d T T − P g a s d V V \begin{aligned} dP&=\left(\frac{4}{3}aT^4+\frac{kT}{\mu m_A V}\right)\frac{dT}{T}-\frac{kT}{\mu m_A V}\frac{dV}{V}\\ &=(4P_{rad}+P_{gas})\frac{dT}{T}-P_{gas}\frac{dV}{V} \end{aligned} dP=(34aT4+μmAVkT)TdTμmAVkTVdV=(4Prad+Pgas)TdTPgasVdV
  引入 β \beta β(关于气体贡献压强比例的参数):
P g a s = β P P r a d = ( 1 − β ) P P_{gas}=\beta P\\ P_{rad}=(1-\beta)P Pgas=βPPrad=(1β)P
  经过一系列的推导后,得到绝热系数:
Γ 1 = 32 − 24 β − 3 β 2 24 − 21 β Γ 2 = 32 − 24 β − 3 β 2 24 − 18 β − 3 β 2 Γ 3 = 32 − 27 β 24 − 21 β \begin{aligned} \Gamma_1&=\frac{32-24\beta-3\beta^2}{24-21\beta}\\ \Gamma_2&=\frac{32-24\beta-3\beta^2}{24-18\beta-3\beta^2}\\ \Gamma_3&=\frac{32-27\beta}{24-21\beta} \end{aligned} Γ1Γ2Γ3=2421β3224β3β2=2418β3β23224β3β2=2421β3227β

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值