编译原理-学习记录2.5-关系的性质

关系的性质

集合上的关系具有五个性质:自反性、反自反性、对称性、反对称性、传递性

自反性

定义:设R是集合A上的关系,若 ∀ x ∈ A \forall x\in A xA,都有 < x , x > ∈ R <x,x>\in R <x,x>R,则称R是A中的自反关系

例如,有集合X={a,b,c},则关系 R 1 = R_1= R1={<a,a>,<b,b>,<c,c>,<a,b>}是自反关系,因为对于集合A中的a,b,c,都存在自己与自己的关系<a,a>,<b,b>,<c,c>

因为自反性是指自己与自己满足关系,所以在关系矩阵中,主对角线上的值都为1:

( 1 ? ? ? 1 ? ? ? 1 ) \left(\begin{matrix}1 & ? & ?\\? & 1 & ?\\? & ? & 1\end{matrix}\right) 1???1???1

而在有向图中,每一个结点都有一个指向自己的边(环)

反自反性

定义:设R是集合A上的关系,若 ∀ x ∈ A \forall x\in A xA,<x,x> ∉ \not\in R,则称R为A中的反自反关系

例如,有集合X={a,b,c},则关系 R 2 = { < a , a > , < a , b > , < b , c > } R_2=\{<a,a>,<a,b>,<b,c>\} R2={<a,a>,<a,b>,<b,c>}不是反自反关系,因为包含了 < a , a > <a,a> <a,a>这一满足自反的元素

在反自反性的关系矩阵中,主对角线上的元素都为0,因为自己与自己不满足关系:

( 0 ? ? ? 0 ? ? ? 0 ) \left(\begin{matrix}0 & ? & ?\\? & 0 & ?\\? & ? & 0\end{matrix}\right) 0???0???0

在有向图中,每个结点都没有环

对称性

定义:R是集合A上的关系,若 ∀ x , y ∈ A \forall x,y\in A x,yA,若有<x,y> ∈ \in R,必有<y,x> ∈ \in R,则称R为A中的对称关系

例如,有集合A={1,2,3},则关系 R 2 = { < 1 , 1 > , < 1 , 2 > , < 2 , 1 > , < 2 , 2 > , < 3 , 1 > } R_2=\{<1,1>,<1,2>,<2,1>,<2,2>,<3,1>\} R2={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>}不是对称关系,因为有<3,1>,但没有相应的<1,3>

从关系矩阵上来看,应该是以主对角线为对称轴的矩阵

而从有向图来看,两个节点之间若有边,则必然是方向相反的两条边

反对称性

定义:设R为集合A上的关系,若 ∀ \forall x,y ∈ \in A,有<x,y> ∈ \in R和<y,x> ∈ \in R,就有x=y,则称R为A中的反对称关系

例如,有集合A={1,2,3},则 R 1 = { < 1 , 1 > , < 1 , 2 > , < 1 , 3 > , < 2 , 2 > } R_1=\{<1,1>,<1,2>,<1,3>,<2,2>\} R1={<1,1>,<1,2>,<1,3>,<2,2>}是反对称关系,因为<1,2>和<1,3>不是双边,而<1,1>和<2,2>则是环

从关系矩阵上来看,以主对角线为对称轴的两个元素,最多有一个1

而从有向图来看,两个不同的结点之间最多有一条边

传递性

定义:R是A中关系,对 ∀ x , y , z ∈ A \forall x,y,z\in A x,y,zA,若有<x,y> ∈ \in R和<y,z> ∈ \in R,就有<x,z> ∈ \in R,则称R为A中的传递关系

例如,有集合A={1,2,3},则 R 3 = { < 1 , 2 > , < 2 , 3 > } R_3=\{<1,2>,<2,3>\} R3={<1,2>,<2,3>}不是传递的,因为缺少<1,3>的存在

参考:https://wenku.baidu.com/view/50ed094a0622192e453610661ed9ad51f11d5436.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值