比较器-迟滞比较器

一、迟滞比较器原理

滞回比较器,在单线电压中,检测两个不同的电压值,使比较器输出高电平或者低电平。

① (同向端输入)当输入电压高于Uth时,比较器输出高电平,当输入电压低于Utl时比较器输出低电平,在两者之间保持。

② (反向端输入)当输入电压高于Uth时,比较器输出低电平,当输入电压低于Utl时比较器输出高电平,在两者之间保持。

二、方案设计

设计电路实现以下功能:

① 当输入电压高于3.5V打开电源

② 当输入电压低于3.3V关断电源。

③ 在3.3~3.5之间保持打开或者保持关断。

实现电路如下:

电路分析:

① 待比较信号由比较器同相端输入

② Uh为3.5V,Ul为3.3V,正电源电压为3.3V。已知这三个参数还需要两个参数,参考电压、R1与R2的比值。

③ 以下网址,为电子发烧友迟滞比较电路参数计算器,输入已知的三个参数可计算出剩余的两个参数。

迟滞比较器计算器_滞后比较器计算器_在线滞回比较器计算工具 - 电子发烧友(www.elecfans.com)

④ 也可由公式进行计算,以下公式对应上面电路图,各参数为 Uh=UT1、Ul=UT2 、RF=R2 、R2=R1、UZ=高电平电压。

Uh

 

Ul

△U

### 同相迟滞比较器的设计与工作原理 #### 工作原理 同相迟滞比较器是一种利用正反馈机制来提高抗噪能力的电路结构。其核心在于引入了一个回差(即迟滞),从而避免因输入信号中的噪声而导致输出频繁跳变的情况发生。具体来说,在同相迟滞比较器中,当输入电压超过某一上阈值 \( V_H \),输出会切换至高电平;而当输入电压降至某一下阈值 \( V_L \) 时,输出才会再次切换至低电平[^4]。 这种双阈值特性是由正反馈网络实现的。通过合理配置电阻参数,可以精确控制上下阈值之间的差异大小——也称为迟滞宽度。这种方法不仅能够有效抑制输入端的小幅波动影响,还特别适合处理那些具有缓慢变化特性的模拟信号源场景[^1]。 #### 设计方法 以下是关于如何设计一个基于运算放大器(Operational Amplifier, Op-Amp) 的典型同相迟滞比较器: 1. **设定基本框架** - 使用标准运放作为核心元件构建基础比较器架构。 2. **定义供电条件** - 明确指定电源电压范围 (+Vcc 和-GND 或者 ±Vcc/2 ) ,这对最终确定实际数值至关重要。 3. **选择合适的参考电压(Vref)** - 根据应用场景需求选定恰当的基准电位值\( V_{REF} \)[^3] 。通常情况下,这个值位于整个动态区间中间位置附近以便均衡分配高低两个方向上的允许偏差幅度。 4. **计算并连接必要的反馈组件(Rf & Rb)** - 添加一对串联电阻形成分压链路,并将其一端接至输出节点另一端返回到非反转输入端口(+IN) 构建起内部自适应调节路径完成正向回馈过程。 ```plaintext Vin ----|>|----+----- Output (Vo) | Rfb | v +IN ---+ \ GND ``` 5. **校验理论模型下的性能指标** - 利用已知公式推导得出预期结果并与初始规格书对比确认一致性: * 上限触发点:\[ V_H=V_{REF}\left(\frac{R_f}{R_b}+1\right)\][^4] * 下限恢复点:\[ V_L=\frac{\left[V_o-V_{REF}(1+\frac{R_f}{R_b})\right]}{(1+\frac{R_f}{R_b})}[^4]\] 6. **实施硬件搭建测试验证效果** - 将上述设计方案付诸实践制作实物原型并通过实验手段评估其实效表现是否满足预定功能要求[^2]。 ```python import numpy as np from scipy import signal def hysteresis_comparator(v_in, ref_voltage, r_feedback, r_base): """ Simulate a simple non-inverting hysteretic comparator. Parameters: v_in : float or array-like Input voltage(s). ref_voltage : float Reference Voltage. r_feedback : float Feedback resistor value in ohms. r_base : float Base resistor value connected to reference voltage in ohms. Returns: output_voltages : ndarray Array of resulting digital levels after comparison. """ gain_factor = 1 + (r_feedback / r_base) upper_threshold = ref_voltage * gain_factor lower_threshold = ((upper_threshold - ref_voltage)/gain_factor)+ref_voltage if isinstance(v_in,(list,np.ndarray)): outputs = [] current_state = 'low' for vi in v_in: if current_state=='low' and vi >= upper_threshold : current_state='high' elif current_state=='high'and vi<=lower_threshold: current_state='low' outputs.append(current_state) return np.array(outputs,dtype=str) else: raise ValueError('Input must be iterable.') ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值