论文阅读|INTRA-CLASS UNCERTAINTY LOSS FUNCTION FOR CLASSIFICATION

主要观点

  • 提出基于高斯分布的损失函数,以处理类内不确定性问题
  • 高斯均值相当于类中心,不确定性用方差描述
  • 类似于类间margin,提出类内margin

原理阐述

类样本不平衡会导致极坐标下的类分类变得困难
类不平衡
L-GM Loss:
L L − G M = − 1 N ∑ i = 1 N log ⁡ e − d z i ( 1 + α ) ∑ m M e − d m ( 1 + R ( m = z i ) α ) + λ ( d z i + 1 2 log ⁡ ∣ Λ z i ∣ ) \begin{aligned} \mathcal{L}_{L-G M}=&-\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{-d_{z_{i}}(1+\alpha)}}{\sum_{m}^{M} e^{-d_{m}\left(1+R\left(m=z_{i}\right) \alpha\right)}} \\ &+\lambda\left(d_{z_{i}}+\frac{1}{2} \log \left|\Lambda_{z_{i}}\right|\right) \end{aligned} LLGM=N1i=1NlogmMedm(1+R(m=zi)α)edzi(1+α)+λ(dzi+21logΛzi)
其中, d m = 1 2 ( x i − μ m ) T Λ m − 1 ( x i − μ m ) , m ∈ [ 1 , M ] d_{m}=\frac{1}{2}\left(x_{i}-\mu_{m}\right)^{T} \Lambda_{m}^{-1}\left(x_{i}-\mu_{m}\right), m \in[1, M] dm=21(xiμm)TΛm1(xiμm),m[1,M]

Center Loss:
L Center  = − 1 N ∑ i N log ⁡ e w y i T x i ∑ k = 0 K e w k T x i + λ 2 ∑ i N ∥ x i − c y i ∥ 2 2 \mathcal{L}_{\text {Center }}=-\frac{1}{N} \sum_{i}^{N} \log \frac{e^{w_{y_{i}}^{T} x_{i}}}{\sum_{k=0}^{K} e^{w_{k}^{T} x_{i}}}+\frac{\lambda}{2} \sum_{i}^{N}\left\|x_{i}-c_{y_{i}}\right\|_{2}^{2} LCenter =N1iNlogk=0KewkTxiewyiTxi+2λiNxicyi22

ICU Loss:
L c l s = − 1 N ∑ i = 1 N log ⁡ p ( z i ∣ x i ) = − 1 N ∑ i = 1 N log ⁡ e − d z i Σ k K e − d k + λ L r e g \begin{aligned} \mathcal{L}_{c l s} &=-\frac{1}{N} \sum_{i=1}^{N} \log p\left(z_{i} \mid x_{i}\right) \\ &=-\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{-d_{z_{i}}}}{\Sigma_{k}^{K} e^{-d_{k}}}+\lambda \mathcal{L}_{r e g} \end{aligned} Lcls=N1i=1Nlogp(zixi)=N1i=1NlogΣkKedkedzi+λLreg
其中, d k = 1 2 [ ( x i − μ k ) T Σ k − 1 ( x i − μ k ) + ln ⁡ ∣ Σ k ∥ , k ∈ [ 1 , K ] d_{k}=\frac{1}{2}\left[\left(x_{i}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{i}-\mu_{k}\right)+\ln \mid \Sigma_{k} \|, k \in[1, K]\right. dk=21[(xiμk)TΣk1(xiμk)+lnΣk,k[1,K]
λ L reg  = ∑ k = 1 K λ 1 ∣ μ k − μ ˉ N k ∣ 2 + λ 2 ∣ σ k 2 − σ ˉ N k 2 ∣ 2 \lambda \mathcal{L}_{\text {reg }}=\sum_{k=1}^{K} \lambda_{1}\left|\mu_{k}-\bar{\mu}_{N_{k}}\right|^{2}+\lambda_{2}\left|\sigma_{k}^{2}-\bar{\sigma}_{N_{k}}^{2}\right|^{2} λLreg =k=1Kλ1μkμˉNk2+λ2σk2σˉNk22
ICU Loss相当于Center Loss + L-GM Loss + 方差规整

现在再加上类内外的margin项,得到:
L I C U = − 1 N ∑ i = 1 N log ⁡ e − d z i ( 1 + α ) Σ k , k ≠ z i K e − d k + e − d z i ( 1 + α ) \mathcal{L}_{I C U}=-\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{-d_{z_{i}}(1+\alpha)}}{\Sigma_{k, k \neq z_{i}}^{K} e^{-d_{k}}+e^{-d_{z_{i}}(1+\alpha)}} LICU=N1i=1NlogΣk,k=ziKedk+edzi(1+α)edzi(1+α)
d z i = 1 2 [ ( x i − μ z i ) T Σ z i − 1 ( x i − μ z i ) + ln ⁡ ( 1 + γ ) ∣ Σ z i ∣ ] d_{z_{i}}=\frac{1}{2}\left[\left(x_{i}-\mu_{z_{i}}\right)^{T} \Sigma_{z_{i}}^{-1}\left(x_{i}-\mu_{z_{i}}\right)+\ln (1+\gamma)\left|\Sigma_{z_{i}}\right|\right] dzi=21[(xiμzi)TΣzi1(xiμzi)+ln(1+γ)Σzi]
d k = 1 2 [ ( x i − μ k ) T Σ k − 1 ( x i − μ k ) + ln ⁡ ∣ Σ k ∣ ] , k ∈ [ 1 , K ] d_{k}=\frac{1}{2}\left[\left(x_{i}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{i}-\mu_{k}\right)+\ln \left|\Sigma_{k}\right|\right], k \in[1, K] dk=21[(xiμk)TΣk1(xiμk)+lnΣk],k[1,K]
其中, α \alpha α控制类外margin, γ \gamma γ控制类内margin

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值