通用分割-Graphonomy论文解读

6 篇文章 0 订阅
1 篇文章 0 订阅


论文: 《Graphonomy: Universal Image Parsing via Graph Reasoning and Transfer》
github: https://github.com/Gaoyiminggithub/Graphonomy

创新点

先前在具有特定标签的特定领域数据集上高度finetune的模型仅适用于本领域,如果没有重新训练,很难适应于其他场景;
作者提出Graphonomy,统一来自不同领域或不同细粒度标签数据,训练一个通用模型。

算法

Graphonomy由两部分构成:
1、Intra-Graph Reasoning:提取每个域中的语义图,通过用图传播信息来改进特征学习。
2、Inter-Graph Transfer:提取每个域中的语义图,通过用图传播信息来改进特征表示学习。
Graphonomy进行通用人体解析实现多层次人体解析如图3所示,
在这里插入图片描述

Intra-Graph Reasoning

图内推理:
利用外部结构化信息进行全局图推理,增强局部特征;
为了构造图:
1、提取图像特征作为图节点的高层表示,如式5;
在这里插入图片描述
其中, Z ∈ R N × b , P ∈ R C × N , W 1 ∈ R C × D Z\in R^{N \times b}, P\in R^{C\times N}, W_1 \in R^{C\times D} ZRN×b,PRC×N,W1RC×D
2、聚合与特定语义部分(如人脸)相关的视觉特征,以描述其对应的图节点的特征,如式6;
在这里插入图片描述
其中, W e ∈ R D × D W^e \in R^{D \times D} WeRD×D, σ \sigma σ为非线性激活函数,图节点 υ \upsilon υ υ ′ \upsilon' υ之间权重 α υ → υ ′ ∈ A e \alpha_{\upsilon\rightarrow\upsilon'}\in A^e αυυAe

Inter-Graph Transfer

图间变换:
为了提取源图到目标图的语义信息;不同级别的人体解析任务有不同的部件标签,但他们之间存在层级相关性;
源图到目标图变换过程如式7,
在这里插入图片描述
其中, A t r ∈ R N t × N S 为 迁 移 矩 阵 , W t r ∈ R D s × D t 为 可 训 练 权 重 矩 阵 A_{tr}\in R^{N_t\times N_S}为迁移矩阵,W_{tr}\in R^{D_s\times D_t}为可训练权重矩阵 AtrRNt×NS,WtrRDs×Dt
作者比较四种迁移矩阵计算方法:
1、Handcraft relation。人工设计。若两节点存在从属关系,则边为1,否则为0;
2、可学习矩阵;
3、特征相似性,如式8,计算源图顶点与目标图顶点特征相似性;
在这里插入图片描述

4、语义相似性。如式9,通过word2vec模型将标签语义信息映射为词向量。 s i j s_{ij} sij表示源图中i节点词向量与目标节点j的词向量之间余弦相似性。
在这里插入图片描述

实验

与SOTA方法比较

在ATR数据及CIHP数据性能如表2、3,
在这里插入图片描述

多数据集通用解析

首先在CIHP数据集上训练,而后将其用于PASCAL-Person-Part数据集,结果如表7.
在这里插入图片描述

消融实验

消融实验结果如表4
在这里插入图片描述

结论

Graphonomy解决人体分割及场景分割两大任务。人体分割使用通用模型减轻标签差异,并使用来自不同数据集的标注信息;类似于人体分割,场景分割联合实例分割以及背景分割任务。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值