2019 南昌邀请赛网络赛 G. tsy's number(莫比乌斯反演 + 线性筛)

在这里插入图片描述


(来补5个月前的题)
题目大意: 让 你 求 : ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n ϕ ( i ) ϕ ( j 2 ) ϕ ( k 3 ) ϕ ( i ) ϕ ( j ) ϕ ( i ) ϕ ( g c d ( i , j , k ) ) 让你求:\sum_{i = 1}^n\sum_{j = 1}^n\sum_{k = 1}^n\frac{\phi(i)\phi(j ^ 2)\phi(k^3)}{\phi(i)\phi(j)\phi(i)}\phi(gcd(i,j,k)) i=1nj=1nk=1nϕ(i)ϕ(j)ϕ(i)ϕ(i)ϕ(j2)ϕ(k3)ϕ(gcd(i,j,k))

通过欧拉函数的公式: ϕ ( x ) = x ∗ ∏ p ∣ x ( 1 − 1 p ) \phi(x) = x *\prod_{p | x}(1 - \frac{1}{p}) ϕ(x)=xpx(1p1),由于 x x x x 2 x^2 x2的素因子相同,因此 ϕ ( x 2 ) = x ∗ x ∗ ∏ p ∣ x ( 1 − 1 p ) = x ∗ ϕ ( x ) \phi(x^2) = x * x *\prod_{p | x}(1 - \frac{1}{p}) = x * \phi(x) ϕ(x2)=xxpx(1p1)=xϕ(x)

进行式子化简: ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n ϕ ( i ) ϕ ( j 2 ) ϕ ( k 3 ) ϕ ( i ) ϕ ( j ) ϕ ( i ) ϕ ( g c d ( i , j , k ) ) \sum_{i = 1}^n\sum_{j = 1}^n\sum_{k = 1}^n\frac{\phi(i)\phi(j ^ 2)\phi(k^3)}{\phi(i)\phi(j)\phi(i)}\phi(gcd(i,j,k)) i=1nj=1nk=1nϕ(i)ϕ(j)ϕ(i)ϕ(i)ϕ(j2)ϕ(k3)ϕ(gcd(i,j,k)) = ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n j ∗ k 2 ∗ ϕ ( g c d ( i , j , k ) ) =\sum_{i = 1}^n\sum_{j = 1}^n\sum_{k = 1}^nj * k^2*\phi(gcd(i,j,k)) =i=1nj=1nk=1njk2ϕ(gcd(i,j,k)) = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n j ∗ k 2 ∗ ϕ ( d ) ∗ [ g c d ( i , j , k ) = d ] =\sum_{d = 1}^n\sum_{i = 1}^n\sum_{j = 1}^n\sum_{k = 1}^nj * k^2*\phi(d) * [gcd(i,j,k) = d] =d=1ni=1nj=1nk=1njk2ϕ(d)[gcd(i,j,k)=d] = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ ∑ k = 1 ⌊ n d ⌋ j ∗ k 2 ∗ ϕ ( d ) ∗ [ g c d ( i , j , k ) = 1 ] =\sum_{d = 1}^n\sum_{i = 1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j = 1}^{\lfloor\frac{n}{d}\rfloor}\sum_{k = 1}^{\lfloor\frac{n}{d}\rfloor}j * k^2*\phi(d) * [gcd(i,j,k) = 1] =d=1ni=1dnj=1dnk=1dnjk2ϕ(d)[gcd(i,j,k)=1] = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ ∑ k = 1 ⌊ n d ⌋ j ∗ k 2 ∗ ϕ ( d ) ∑ p ∣ g c d ( i , j , k ) μ ( p ) =\sum_{d = 1}^n\sum_{i = 1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j = 1}^{\lfloor\frac{n}{d}\rfloor}\sum_{k = 1}^{\lfloor\frac{n}{d}\rfloor}j * k^2*\phi(d) \sum_{p|gcd(i,j,k)}\mu(p) =d=1ni=1dnj=1dnk=1dnjk2ϕ(d)pgcd(i,j,k)μ(p) = ∑ d = 1 n ∑ p = 1 ⌊ n d ⌋ μ ( p ) ∑ i = 1 ⌊ n p ∗ d ⌋ ∑ j = 1 ⌊ n p ∗ d ⌋ ∑ k = 1 ⌊ n p ∗ d ⌋ j ∗ k 2 ∗ ϕ ( d ) =\sum_{d = 1}^n\sum_{p = 1}^{\lfloor\frac{n}{d}\rfloor}\mu(p)\sum_{i = 1}^{\lfloor\frac{n}{p*d}\rfloor}\sum_{j = 1}^{\lfloor\frac{n}{p*d}\rfloor}\sum_{k = 1}^{\lfloor\frac{n}{p*d}\rfloor}j * k^2*\phi(d) =d=1np=1dnμ(p)i=1pdnj=1pdnk=1pdnjk2ϕ(d) = ∑ d = 1 n ∑ p = 1 ⌊ n d ⌋ μ ( p ) ∑ i = 1 ⌊ n p ∗ d ⌋ ∑ j = 1 ⌊ n p ∗ d ⌋ ∑ k = 1 ⌊ n p ∗ d ⌋ j ∗ k 2 ∗ ϕ ( d ) =\sum_{d = 1}^n\sum_{p = 1}^{\lfloor\frac{n}{d}\rfloor}\mu(p)\sum_{i = 1}^{\lfloor\frac{n}{p*d}\rfloor}\sum_{j = 1}^{\lfloor\frac{n}{p*d}\rfloor}\sum_{k = 1}^{\lfloor\frac{n}{p*d}\rfloor}j * k^2*\phi(d) =d=1np=1dnμ(p)i=1pdnj=1pdnk=1pdnjk2ϕ(d) = ∑ T = 1 n ⌊ n T ⌋ ∗ f ( ⌊ n T ⌋ ) ∗ F ( ⌊ n T ⌋ ) ∑ d ∣ T ϕ ( d ) ∗ μ ( T d ) =\sum_{T = 1}^n\lfloor\frac{n}{T}\rfloor*f(\lfloor\frac{n}{T}\rfloor) *F(\lfloor\frac{n}{T}\rfloor)\sum_{d |T}\phi(d)*\mu(\frac{T}{d}) =T=1nTnf(Tn)F(Tn)dTϕ(d)μ(dT) f ( x ) = x ∗ ( x + 1 ) 2 , F ( x ) = x ∗ ( x + 1 ) ∗ ( 2 ∗ x + 1 ) 6 f(x) = \frac{x * (x + 1)}{2},F(x) = \frac{x * (x + 1) * (2 * x + 1)}{6} f(x)=2x(x+1),F(x)=6x(x+1)(2x+1)

左边部分可以分块,右边是欧拉函数和莫比乌斯函数的卷积,两个都是积性函数,可以用线性筛预处理前缀和。
S ( T ) = ∑ d ∣ T ϕ ( d ) ∗ μ ( T d ) S(T) = \sum_{d |T}\phi(d)*\mu(\frac{T}{d}) S(T)=dTϕ(d)μ(dT)

1. S ( p ) = p − 2 S(p) = p - 2 S(p)=p2,p为质数
2. S ( p 2 ) = ϕ ( p 2 ) − ϕ ( p ) , S ( p 3 ) = ϕ ( p 3 ) − ϕ ( p 2 ) S(p^2) = \phi(p^2) - \phi(p),S(p^3) = \phi(p^3) - \phi(p^2) S(p2)=ϕ(p2)ϕ(p),S(p3)=ϕ(p3)ϕ(p2),因为莫比乌斯函数的性质,只有因子 1 和 p有贡献。由此可得 S ( p k ) = ϕ ( p k ) − ϕ ( p k − 1 ) S(p^k) = \phi(p^k) - \phi(p^{k - 1}) S(pk)=ϕ(pk)ϕ(pk1)
3. S ( i ∗ p k ) = S ( i ) ∗ S ( p k ) S(i * p^k) = S(i) * S(p ^ k) S(ipk)=S(i)S(pk)

根据这三点可以线性筛得出 S 函 数 S函数 S
另外由于模数是 2 30 2^{30} 230,计算 F ( x ) F(x) F(x)时,6 没有逆元,为了防止计算溢出,可以拆成 x ∗ ( x + 1 ) 2 ∗ 2 ∗ x + 1 3 = f ( x ) ∗ 2 ∗ x + 1 3 \frac{x * (x + 1)}{2} * \frac{2 * x + 1}{3} = f(x) *\frac{2 * x + 1}{3} 2x(x+1)32x+1=f(x)32x+1,3的逆元可以用扩展欧几里得求出,分步取模。
复杂度 O ( T ∗ n ) O(T * \sqrt n) O(Tn )


代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e7 + 10;
const ll mod = 1ll << 30;
const ll inv = 715827883;
typedef long long ll;
bool ispri[maxn];
int pri[maxn];
int phi[maxn];
int tp[maxn];
ll f[maxn];
int t,n;
void sieve(int n) {
	ispri[0] = ispri[1] = true;
	pri[0] = 0;f[1] = 1;phi[1] = 1;
	for(int i = 2; i <= n; i++) {
		if(!ispri[i]) {
			phi[i] = i - 1;
			pri[++pri[0]] = i;
			tp[i] = i;
			f[i] = i - 2;
		}
		for(int j = 1; j <= pri[0] && i * pri[j] <= n; j++) {
			ispri[i * pri[j]] = true;
			if(i % pri[j] == 0) {
				phi[i * pri[j]] = phi[i] * pri[j];
				tp[i * pri[j]] = 1ll * tp[i] * pri[j];
				f[i * pri[j]] = 1ll * f[i / tp[i]] * (phi[tp[i * pri[j]]] - phi[tp[i]]);
				break;
			}
			tp[i * pri[j]] = pri[j];
			f[i * pri[j]] = f[i] * f[pri[j]];
			phi[i * pri[j]] = phi[i] * phi[pri[j]];
		}
	}
	for(int i = 1; i <= n; i++) {
		f[i] %= mod;
		f[i] = 1ll * i * i % mod * i % mod * f[i] % mod;
		f[i] = (f[i] + f[i - 1]) % mod;
	} 
}
ll cal(ll x) {
	return x * (x + 1) / 2 % mod;
}
ll cal2(ll x) {
	return cal(x) * (2 * x + 1) % mod * inv % mod;
}
int main() {
	sieve(10000000);
	scanf("%d",&t);
	while(t--) {
		scanf("%d",&n);
		ll l,r;
		ll ans = 0;
		for(l = 1; l <= n; l = r + 1) {
			r = n / (n / l);
			ll p = n / l;
			ans = (ans + p * cal(p) % mod * cal2(p) % mod * ((f[r] - f[l - 1] + mod) % mod) % mod) % mod;
		}
		printf("%lld\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值